
Enabling the Management of Everything Using TEMP
Geoffrey C. Carpenter

IBM T. J Watson Research Center, P. O. Box 704, Yorktown Heights, NY 10598 USA
(email: gcc@watson.ibm.com)

Abstract
The Enterprise Management Protocol (TEMP) and its
affiliated infrastructure provide a highly scalable,
transport protocol-independent base for enabling the
management of networked devices, systems and, most
importantly, applications. TEMP supports automatic
discovery, interactions between incompatible protocol
domains, multiple yet independent entities on a single
host and self-describing instrumentation. These features
enable the implementation of generic monitoring
applications as well as access to entity-specific
management interfaces using a conventional World Wide
Web browser.

1. Introduction

Shortly after the publication of version 1 of the Simple
Network Management Protocol (SNMP) [1], efforts were
undertaken to utilize the then new protocol to manage
applications and existing devices that had no SNMP
support available. The earliest effort was the SNMP
Distributed Program Interface, a protocol and API
specification that was implemented for IBM's TCP/IP
products in 1989 and later documented in RFC 1228 [2].
Additional DPI-like subagent technologies were
developed and today the Internet Engineering Task Force
Agent-X working group is trying to publish a DPI version
2-derived standard for the SNMP community.

Despite that promising start and a decade of
availability of subagent technologies, the dearth of
manageable applications is quite telling. Experience
demonstrated a considerable disconnect between the
information model imposed by SNMP and the underlying
implementation of virtually any program (e.g., operating
system kernel, protocol stack, application, etc.). Consider
SNMP's requirements for:
• Lexicographic ordering: most data structures

maintained by a program are not in sorted order,
which requires either significant modification of the
program or expensive on-demand conversions from
more appropriate data structures (e.g., hash tables).

• Scalar-only data types: only the most trivial of
programs utilize scalar-only data. If a program is
sophisticated enough to offer remote management

capabilities, it probably uses data structures at least
as sophisticated as an array or list. Modeling these
oft-used data structures as scalar-only elements is an
unnatural task.

• OIDs to be assigned to identify each item of data:
rarely is an OID a natural way to name a piece of
data. The requirement to coordinate with a higher-
level authority to obtain portions of the OID space is
an additional inhibitor.

• Using a well-known port to address an agent: this
leads to the use of subagent technologies. They
create two major difficulties: a prerequisite that the
agent on the target host supports the chosen subagent
technology and the robustness of an application is
affected by all other subagents attached to the master
agent.

Further complicating matters, SNMP provides no
underlying support for automatic discovery of
manageable entities. This creates a considerable problem
when attempting to develop programs that are able to
manage applications that can come and go or even be
instantiated as multiple copies running simultaneously on
a host. Finally, for the purposes of the discussion below,
SNMP is a polling-based protocol and lacks any
guarantees on the delivery of events. This renders it
increasingly ineffective as one moves beyond managing
relatively small numbers of core network elements, such
as routers, and the health of a few important shared
resources, such as servers.

In response to these issues, The Enterprise
Management Protocol (TEMP) was developed and
utilized to manage new technologies, such as Narwhal
[3], as well as existing applications, such the Apache web
server [4].

2. An Overview of TEMP

TEMP-based enties are broadly classified into two
distinct groups: management applications and agents.
While management application is a self-describing term,
the term agent refers to any entity that provides access to
the instrumentation of a device, host or application. The
group of TEMP agents contains a subset known as TEMP
registration agents. TEMP registration agents are

differentiated from regular TEMP agents only by the fact
that they bind to a well-known transport address.

2.1. TEMP Design Goals

Given the simple model of management applications
and agents (some of which run at well-known transport
addresses), TEMP was designed to meet several goals,
one of which was to be secure. A list of other goals
includes the following points:
• Highly scalable.
• Support for mixed-protocol environments.
• Support for multiple independent entities running on

a single host.
• Support for automatic discovery and administrative

domains.
• Support for non-scalar data.
• Support for self-describing instrumentation and

management interfaces.
These major design points are elaborated upon below.

2.2. Scalability

As a rough estimate, the monitoring and management
of all of the devices, hosts and applications in an
enterprise is a problem two orders of magnitude greater
than that dealt with by conventional network management
systems. Obviously, a small enterprise with only four
hosts is not going to strain the capabilities of any
commercial management platform, but one with over
100,000 hosts is in a different league.

TEMP is datagram-based, eliminating the scaling
problems created by session-oriented protocols. It is also
an event-driven protocol, so it does not require the polling
of individual entities. Dropping the polling requirement
eliminates 50% of the normal traffic overhead as no
request need be sent from a management application to a
TEMP-based entity for verification of aliveness or
detection of a significant status change. Instead, TEMP-
based entities emit a periodic heartbeat to announce their
existence. These heartbeats are called STATUS messages
in the protocol specification [5].

All TEMP entities maintain an event history, which is
of some finite length. The STATUS messages include
the indices of the start and end of the event queue. A
management application can determine if something
interesting has happened by comparing the end-of-queue
index with a value that it has previously recorded for the
remote entity. If the value has changed, the management
application can obtain all of the events in the queue that it
has not seen using a single request. Benefits of this
behavior include:

• The possible outage of a TEMP-based entity can be
detected by the failure to receive a STATUS message
within the guaranteed heartbeat interval.

• Events become reliable since, while STATUS
messages can be lost, eventually one will be received
and the management application can obtain all of the
events that have been queued. This also permits a
newly started management application to obtain a
history of events that occurred when the management
application was not operational.

• Multiple management applications can retrieve
events from a TEMP-based entity without interfering
with other applications because they do not modify
the event queue in any way.

2.3. Mixed-Protocol Environments

All TEMP entities are identified by a Universally
Unique Identifier (UUID) instead of by transport
addresses. This provides several benefits, such as:
• Entities residing on multi-homed hosts always appear

as a distinct entity, not as multiple entities
corresponding to each interface address. This
eliminates the need for management applications to
discover and maintain tables that map multiple
transport addresses to a particular agent record.

• UUIDs can be either pre-defined or dynamically
generated as called for by the deployment situation.
Among other things, this makes it trivial to identify a
new instance of an application that reused a
particular transport address

• Separation of entity identification from transport
address allows inter-protocol domain routing to take
place. This permits entities operating in
incompatible protocol domains to interact as long as
there is one TEMP-based entity running on a host
capable of communicating using both transport
protocols.

2.4. Multiple Entities on a Single Host

With the exception of TEMP registration agents and
potentially some TEMP-based management applications,
TEMP entities use dynamically assigned transport
addresses. Because they do not use well-known transport
addresses, there is no conflict with multiple applications
running on a host competing for the same well-known
transport address. This results in the elimination of a
need for any subagent technology. As noted above,
eliminating the need for using a particular subagent
technology means that:
• An application can be deployed without regard to the

subagent technology available on a particular host.

• An application's performance and robustness cannot
be influenced by the misbehavior of another
application connected to the same master agent.

• Distinct copies of a specific application can be run on
a host without requiring coordination to generate
unique names for each application instance.

2.5. Automatic Discovery and Administrative
Domains

TEMP inherently supports the automatic discovery of
TEMP-based entities. In contrast to SNMP, where a
specialized management application has to probe the
network in an attempt to discover reachable SNMP
agents, TEMP agents register themselves with TEMP
registration agents.

Unlike devices closely associated with the underlying
network, where knowledge of physical interrelationships
provides significant information, management of host-
based services and applications are often more
appropriately grouped or displayed in tems of their
administrative relationships. Each TEMP entiity can be a
member of multiple administrative domains and this
membership is part of the information announced by
every TEMP entity. As an illustration, this feature allows
a view of a set of DNS servers to be displayed although
the individual servers may be in different physical
locations.

These two capabilities allow very efficient and reliable
discovery of the active TEMP-based entities as well as
their administrative relationships.

Note: well-known and critical elements can be
permanently assigned a UUID (instead of using a
dynamically generated UUID) and this information can
be associated with static topology data. This approach
allows a management application to report on devices that
are down when the application begins operation.

2.6. Complex Data Types

In addition to the conventional scalar data types, such
as integers, floating point numbers and octet strings,
TEMP supports complex data types such as sparse arrays,
associative arrays and ordered lists of elements. These
data types map naturally to a wide range of data structures
utilized in most programs.

2.7. Self-Describing Instrumentation and
Management Interfaces

A major goal for TEMP is to eliminate as much as
possible the use of agent-specific monitoring or
management applications. One significant step TEMP

takes towards this goal is the use of self-describing
instrumentation. Consider the current situation with most
SNMP agents: a vendor often provides a large number of
device-specific variables in an attempt to differentiate the
product in question. While potentially useful, one of the
most frequent questions posted to SNMP-related mailing
lists is on the order of "what variables should I monitor?".
In contrast, TEMP agents make available a list of useful
variables to monitor and their associated thresholds. This
well-defined structure allows a generic management
application to interact with an arbitrary TEMP agent and
perform some useful analysis of what has gone wrong
when a problem is reported.

Another problem for vendors is the implementation of
agent-specific operator interfaces. Often this has required
choosing a particular mangement platform and writing
platform-specific applications that are able to access the
management capabilities offered by the agent.

TEMP takes a different approach that eliminates the
need for a vendor to choose to support a particular
management platform. A TEMP agent can return HTML
fragments that implement an operator interface that is
accessible via a conventional World Wide Web browser.
It is important to note that unlike other Web-based
management approaches, TEMP entities do not respond
to HTTP requests (unless that is the purpose of the
TEMP-enabled application, like a HTTP server). This
means that in a TEMP-based environment, an off-the-
shelf browser can obtain management interface pages
from a TEMP agent running in a SNA environment, even
if that means traversing an IPX domain in the process.

To enable this functionality, an HTTP server is
configured with a set of CGI executables and an HTML
page (to provide an obvious starting place). The operator
browses the HTML page that provides a link to access the
TEMP-based management functionality.

The CGI scripts are invoked as appropriate by the
HTTP server and they communicate with TEMP-based
entities using TEMP, not HTTP. When a TEMP agent is
queried for a variable that provides a management
interface, the returned HTML fragments are potentially
rewritten on the fly before being forwarded via the HTTP
server back to the web browser. The rewriting
capabilities work in both directions, allowing, among
other capabilties, a retrieved HTML fragment containing
FORMs to be modified based on data entered into fields.
When data that is not HTML fragement is returned via a
HTTP<->TEMP gateway (like integers, floats, arrays,
etc.), the results are converted into formatted text and
displayed as a page. This provides a simple variable
dump facility.

2.8. TEMP Protocol Elements

TEMP has several command elements defined for the
protocol. The are the minimal set of directives found to
be useful to date are:
• RETRIEVE (an existing variable)
• MODIFY (an existing variable)
• CREATE (a new variable)
• CREATE-OR-MODIFY (a variable)
• DELETE (an existing variable)
• LIST (elements under a particular point in the

naming tree)
• BEGIN-BLOCK (to introduce a sequence of

commands)
• END-BLOCK (to end a sequence of commands)
• IF (conditional execution of commands)
• ADD-ELEMENT (new element into a complex

variable)
• REMOVE-ELEMENT (from a complex variable)
• REPLACE-ELEMENT (an existing element of a

complex variable)
• ADD-OR-REPLACE-ELEMENT (in an existing

complex variable)
A TEMP agent is able to send the following packets to

a manager:
• RESPONSE (to a RETRIEVE, MODIFY, CREATE

or DELETE request)
• STATUS (an unsolicited notification)

The IF directive, combined with appropriate BEGIN-
BLOCK and END-BLOCK directives, can be very
powerful when used in conjunction with broadcast or
multicast packets. For example, the execution of
particular command elements can be conditionally
performed based on the type of the device or other
arbitrary criterion. Less obvious is the potential for use in
specialized broadcast-only media, such as the vertical
blanking interval of a television signal.

3. Experience with TEMP

TEMP has been in use for about a year as the
management protocol for Narwhal, a new technology that
provides numerous additional capabilities for applications
that utilize intermediaries (e.g., SOCKS servers or HTTP
proxy caches). Narwhal Client Agents are intended to be
deployed on every host in an enterprise and are actively
managed. Such active management enables resource
resource reservation, the proactive communication of
information regarding poorly performing intermediaries,
and automatic configuration of mobile clients. The nature
of the application as well as the number of deployed units
creates a problem for which TEMP is uniquely suited.

TEMP has also been used to add management
capabilities to the Apache web server as part of an
ongoing project to add management capabilities to key
parts of the Internet infrastructure.

4. Future Work

A significant amount of existing instrumentation has
been deployed using SNMP agents or the Desktop
Management Interface [6]. Such instrumentation
represents a notable investment on the part of various
vendors. It would be impractical to ignore this deployed
infrastructure; consequently, gateways between TEMP
and SNMP and TEMP and DMI-acessible data are under
development.

Discussions are also underway to utilize TEMP in the
management of Internet-2-related services and
applications.

5. Conclusions

TEMP is a new protocol and associated infrastructure
that is intended to address the deficiencies of existing
approaches that have prevented the widespread
development of manageable applications.

TEMP supports automatic discovery of manageable
entities and the development of generic management
applications through its use of self-describing
instrumentation and Web-accessible management
interfaces. TEMP enables management interactions
between incompatible protocol domains and has very
attractive scaling properties.

For the application developer, TEMP provides several
advantages. It is designed to eliminate the need for any
subagent technologies and the TEMP data model maps
naturally to the data structures used by most programs.

6. References

[1] J. Case, M. Fedor, M. Shoffstall and J. Davin., "A Simple
Network Management Protocol", RFC 1067.
http://www.ietf.orf/rfc/rfc1067.txt, 1998.

[2] G. Carpenter and B. Wijnen, "Simple Network Management
Protocol Distributed Program Interface", RFC 1228,
http://www.ietf.org/rfc/rfc1228.txt, 1991.

[3] G. Carpenter and G. Goldzsmidt, "Improving the
Availability and Performance of Network Mediated
Services", anticipated publication in INET'99 conference
proceedings.

[4] Apache web server, http://www.apache.org
[5] G. Carpenter, The Enterprise Management Protocol,

Unpublished IBM Research report, 1998.
[6] Desktop Management Interface,

http://www.dmtf.org/spec/dmis.html.

