
Version: 3/12/2003 12:58 AM

DDiissttrriibbuutteedd
SSttaarrsshhiipp

User’s Guide

ii

DDiissttrriibbuutteedd SSttaarrsshhiipp UUsseerr’’ss GGuuiiddee
FARGOS Development, LLC
757 Delano Road
Yorktown Heights, NY 10598
http://www.fargos.net
mailto:support@fargos.net

Copyright  2002 - 2003 FARGOS Development, LLC

NNoottiiccee ooff RRiigghhttss
All rights reserved. This document may be rendered into whatever form is useful for
the user, including electronic transmission or printing, so long as the content is not
altered.

TTrraaddeemmaarrkkss
FARGOS/VISTA, FARGOS/SolidState and FARGOS/SolidConnection are trademarks of
FARGOS Development, LLC.

AAbbbbrreevviiaattiioonnss
FARGOS Development, LLC is a Limited Liability Company registered with the State
of New York. It is required to identify itself as such in its name, hence the “, LLC”
suffix. For purposes of readability in this document, the “, LLC” suffix is sometimes
dropped. The phrase “FARGOS Development” always denotes “FARGOS
Development, LLC” and is not intended to suggest any alternate form of
organization.

NNoottiiccee ooff LLiiaabbiilliittyy
Information in this document is distributed on an “As Is” basis, without warranty.
While every precaution has been taken in the preparation of this document, FARGOS
Development, LLC shall not have any liability to any person or entity with respect to
any loss or damage caused or alleged to be caused directly or indirectly by the
instructions contained within this document or by the computer software or hardware
products described in it.

http://www.fargos.net/
mailto:support@fargos.net

iii

Contents
1. Distributed Starship ...1

Introduction..1
Installing the Game ...2

2. Playing Distributed Starship ..4
Joining a Distributed Starship Game ..4
Explanation of the Display ..6

3. Using Multiple Servers ..9
Distribution of the Simulation..10

4. Applying the Concepts to other Applications ..13

1

1. Distributed Starship

Introduction
Distributed Starship is a sample FARGOS/VISTA application that implements a
space warfare simulator. It is intended to demonstrate the power and flexibility of
the FARGOS/VISTA Object Management Environment while being entertaining at the
same time. Distributed Starship can be played simultaneously by zero, one, or
more human players. If the simulation is left unattended, it is not uncommon for it
to end up pushing entire fleets of starships from one side of the galaxy to the other
responding to distress messages1. While the entire game can be processed by a
single host, Distributed Starship is designed to be able to dynamically split the
computational workload among an arbitrary pool of heterogeneous hosts, whose
membership can grow and shrink at will. In certain configurations, it can provide
fault-tolerant operation.

HHiissttoorryy
The original version of Starship was written in 1987 by Bryan Beecher and Geoff
Carpenter while they were at the University of Michigan. At the time, there was a
perceived need for a game that was more realistic than the then-current genre in
which a single human-controlled ship took on fleets of weak and unintelligent ships.
Starship addressed these issues by providing a simulator that supported multiple
users and a rigid enforcement of game rules to ensure that human-controlled ships
had no inherent advantages over those controlled by the computer. To further
enhance the realism, ships were assigned missions, such as deliver supplies to a
planet or rendezvous with a ship. Completion of a mission awarded points to a ship,
which could be cashed in for upgraded capabilities. In this fashion, a ship’s strength
increased much like hit points in a conventional role-playing game. A persistent
copy of the user’s ship data was maintained, thus as long as a ship survived its
battles, it could be used in subsequent games.

In 1994, Distributed Starship was written as a demonstration of IBM Research’s
DRAGONS technology suite. While useful in a standalone environment, the most
dramatic demonstrations were possible on a trade show floor. The original Starship
C source code was used as a template for a new, dynamically distributed application
that was written in Object-Oriented G (OOG). Distributed Starship was a
completely new game based on many, but not all, of the concepts found in the
original Starship—some details were dropped and new features such as a real-time
graphical user interface and the ability to split the simulation across multiple hosts
were added. A decade later, it was converted from OOG to Object Implementation
Language 2 (OIL2) to run as a FARGOS/VISTA-based application that utilizes modern
web browsers and either the new Scalable Vector Graphics XML-based application or
Macromedia’s Shockwave Flash as the graphic user interface. There is some loss of
functionality due to the use of client/server-oriented web browsers vs. the peer-to-
peer, event-driven architecture of a DRAGONS Display Manager, but the result is
quite close.

1 To keep things from getting out of hand, there is an explicit upper bound enforced
in the game.

http://www.fargos.net/vista.html
mailto:bryan.beecher@umich.edu
http://www.fargos.net/gcc.html
http://www.fargos.net/gcc.html
http://www.fargos.net/vista.html
http://www.w3.org/TR/2001/REC-SVG-20010904/

2

MMuullttiippllaayyeerr SSyynncchhrroonniizzaattiioonn
Any multiplayer game faces a significant issue related to the synchronization of the
activities of the players. Many games (e.g., checkers, chess, Mille Bornes, Chutes &
Ladders) have explicit rules that enforce synchronization. For example, arguably the
most common rule is that only one player at a time can issue commands (e.g., make
a move)—such games are classified as turn-based.

Starship was intended to operate continuously in real-time with both humans and
the computer operating starships. It should be obvious that it is impossible to force
all human players to enter their commands at the exact same moment in time.
Likewise, computers have long been capable of performing work faster than humans,
so a real-time game that accepted player input as fast as it could be provided would
give a computer-controlled player a significant advantage. The Starship simulator
addressed the synchronization issue by implementing the game as an on-going
series of state transitions. Inputs would be collected from both human players and
the decisions that were made on behalf of the computer-controlled starships. The
collected inputs would be applied to the various objects being processed by the
simulation (e.g., starships, starbases, and planets) to yield a new state for the
simulation. The issue of the disparity of computational speed between human and
computer was handled by imposing a delay of several seconds between each state
transition: this created a window of opportunity for human players to enter
commands. The disparity of processing capabilities between different humans was
addressed by imposing an upper bound on the number of inputs that would be
permitted by any player between state transitions (for example, a player might be
limited to a maximum of three commands).

These concepts were carried over into the implementation of Distributed Starship:

• Rather than run flat out and compute state transitions as quickly as possible,
the simulation pauses for several seconds after every turn.

• User commands are collected for application as input to the next state
transition of the simulation, rather than being applied immediately. Thus,
when a weapon is fired, the damage is not computed at that instant in time.
Instead, the user's request to fire the weapon is queued for processing. This
also permits users to enter commands at any point in time; they are always
processed by the simulator on the next state transition.

• To help enforce the number of commands a user can issue per turn, some
controls are temporarily disabled. For example, when a weapon is fired, the
fire button is no longer available to be repeatedly pressed. When the weapon
has recycled, the fire button once again becomes active.

Installing the Game
An on-going Distributed Starship game is maintained on www.fargos.net, so the
quickest way to play is to just access the www.fargos.net site. It is, however, a
public server and individuals may wish to setup their own private games. The
FARGOS/VISTA Software Development Kit includes the OIL2 Architecture Neutral
Format object code files that implement all of the Starship-specific application
classes and some FARGOS/VISTA Object Management Environment rc files. A
minimum of one server must be deployed for each Distributed Starship game,
which is referred to as the master. Additional servers may participate in the
simulation and they are referred to as slaves. The discussion of exploiting multiple
hosts is deferred until later (see the section "Using Multiple Servers"). Readers, who
have no desire to operate their own games or contribute a slave processor to the

http://www.fargos.net/starship.html
http://www.fargos.net/starship.html

3

public game during their participation, can skip ahead to the section titled "Joining a
Distributed Starship Game".

The graphical user interface is provided via a World Wide Web browser, so an
HTTPdaemon and affiliated objects must be configured. The FARGOS/VISTA HTTP
Server Programmer’s Guide covers this topic in full in and definitively, but a
prototype configuration is illustrated below in Figure 1:

Figure 1

PeerRegistry
AnnounceServices
HTTPcommonLogFormat /tmp/http.log www.domain.comwww.domain.comwww.domain.comwww.domain.com
HTTPdaemon http.profile tcp:0.0.0.0:4321
HTTPpurgeCache 30 www.domain.comwww.domain.comwww.domain.comwww.domain.com

Note: administrators may find that the creation of an AnnounceServices object is
not performed in the rc file of many existing HTTPdaemons. An
AnnounceServices object is required to enable the distribution of the simulation
across multiple hosts. If no use of this capability will be made, then the
AnnounceServices object can be omitted; however, since AnnounceServices
consumes no CPU cycles unless inter-FARGOS/VISTA Object Management
Environment connections are established, there is little incentive to not enable this
service.

Security Note: the presence of an AnnounceServices object does not enable
incoming FARGOS/VISTA peer connections, so the presence of this object does not
introduce a security concern. The class that is of concern is
AcceptPeerConnections.

The rc file shown below in Figure 2 illustrates the objects that must be created to
configure the master server for a Distributed Starship game. The various
LoadOIL2File objects load the OIL2 Architecture Neutral Format (OIL2 ANF) object
code files. Once the OIL2 ANF files are loaded, the initial objects needed to setup2
the game may be created. The StarshipHTTPsetup object takes one mandatory
argument, which is the logical name of the URLdirectory corresponding to the HTTP
server to which the game’s graphic user interface providers should attach. In both
Figure 1 and Figure 2, this has been denoted as www.domain.com. The
appropriate name must be substituted when creating a local rc file. It can also be
provided an optional Boolean flag which indicates whether or not Shockwave Flash
should be used as a rendering engine rather than Scalable Vector Graphics (SVG).

The last object created in Figure 2 is StarshipMaster. For a given Distributed
Starship game, there is only one master server, which is the server upon which the
StarshipMaster object was created. There can be an arbitrary number of additional
servers participating in simulation, each of which is viewed as a slave server. The
slave servers are configured identically to the master server with one exception:
rather than create a StarshipMaster object, a StarshipSlave object is created
instead.

2 As an alternative, an AutomaticClassLoader object can be used, which will
automatically load any needed classes on demand.

4

Figure 2

LoadOIL2File "file:clSS_Master.o2o"
LoadOIL2File "file:clSS_ShipNames.o2o"
LoadOIL2File "file:clSS_Missions.o2o"
LoadOIL2File "file:clSS_HTTP.o2o"
LoadOIL2File "file:clSS_HTTPsvg.o2o"
Setup HTTP services
StarshipHTTPsetup www.domain.comwww.domain.comwww.domain.comwww.domain.com
create StarshipMaster only on master machine
StarshipMaster
StarshipSlave is automatically created by StarshipMaster

There are three additional template files that must be deployed:

Table 1

File Notes

starshipLogin.html A server-side-include-processed (see
HTTP_SSIprocessor) template file that
must be installed in a file system
directory that is exported as part of the
logical root of the HTML page tree.

starshipGUI.html A template for dynamically generated
pages that display each starship’s status.

starshipGUIswf.html An equivalent template used when
Shockwave Flash is the rendering engine
rather than SVG.

animAlert.svg A template for a Scalable Vector Graphics
file that implements the animated alert
status graphic. This file is read by the
StarshipHTTPsetup object.

anim[Red|Green|Yellow]Alert.swf Shockwave Flash animations for the
red/green/yellow alert status graphic.

2. Playing Distributed Starship

Joining a Distributed Starship Game
The user interface for the FARGOS/VISTA-based version of Distributed Starship
game is provided through a World Wide Web browser. A player's web browser must
support the rendering engine chosen by the administrator, which is either Scalable
Vector Graphics or Macromedia’s Shockwave Flash format.

To join a game, a user must first browse the starshipLogin.html page provided by
either the master server or any one of the slave hosts that are providing the HTTP-
based user interface services. If only one server is hosting the game, the choice of
web host is trivial. However, in the more interesting case in which the computational
workload of the simulation is shared among multiple servers, a user should attempt
to connect to the server that is closest to his machine. The optimal case is when the
closest StarshipSlave object is actually resident on the user's own computer since
this means she has contributed the CPU resources of her machine to assist in the

http://www.w3.org/TR/SVG/
http://www.w3.org/TR/SVG/

5

processing of the game. The use of multiple servers is discussed later in the section
entitled "Using Multiple Servers".

Figure 3

CCrreeaattee aa NNeeww SSttaarrsshhiipp

New Starship Name:

Race:
Federation

Type:
Heavy Cruiser

Create and Take Command of a New

SSccaann aann EExxiissttiinngg SSttaarrsshhiipp

Starship Name:
Hood Scan Indicated Starship

TTaakkee CCoommmmaanndd ooff aann EExxiissttiinngg SSttaarrsshhiipp

Starship Name:
Hood

Take Command of Indicated

As illustrated in the image of Figure 3, the starshipLogin.html page provides three
options:

• Create a new starship and take command
• Scan an existing starship (which provides a read-only view)
• Take command of an existing starship

Players will normally utilize the first option, Create a New Starship, to create a new
starship of their very own. A user may provide a desired name for the starship or let
the game choose an appropriate one automatically. If a player provides a name, it
should not have spaces. A player may also choose the side to join by selecting the
desired race.

Visitors can monitor the status of both player ships and computer-controlled craft by
utilizing the second option, Scan a Starship. The list of known starships is
automatically generated using a server-side-include directive; if the data is obsolete,
a simple refresh of the page will yield a current list.

If a player has already created a starship, but left the game and wishes to resume
playing, the third option, Take Command of an Existing Starship, is available. The
game will not permit a user to take command of a starship that already has a
currently active captain.

Regardless of the option taken, a successful request will yield a display similar to the
display of Figure 4 below. The fundamental difference between a read-only view and
a controlling display is the presence of additional form fields, which permit the
alteration of various parameters, such as a ships destination and speed. The layout
of the displays and the operation of the controls are discussed in the next section.

http://www.fargos.net/starshipLogin.html

6

Explanation of the Display
The bridge displays provide information about:

• Deflector shield status, (and controls to raise/lower the shields).
• A short-range sensor scan and target information window.
• A long-range sensor scan.
• A display of course/speed/destination (and controls to set these to desired

values).
• Weapons status (and associated controls to lock onto a target and fire).
• Miscellaneous statistics such as total crew members and power utilization.
• Text windows that display informative messages and current mission orders.

A sample display appears below in Figure 4 and Figure 5. As enhancements may
have been made to the game since the point in time when this documentation was
generated, the actual appearance may be slightly different with respect to some
cosmetic details.

Figure 4

The Renown is under attack by the Upholder

7

AAlleerrtt CCoonnddiittiioonn
The current alert condition (green, yellow or red) is displayed using an active graphic
in the upper left-hand corner. In Figure 4, the starship is under attack, so its alert
condition is set to red.

SShhiieelldd SSttaattuuss
In the upper left hand corner of the display, immediately below the Alert Condition
graphic, is the current shield status. Shields can be raised or lowered by pressing the
Raise Shields or Lower Shields button, respectively. The icon of the ship is
surrounded by an image indicating shield strength: the thicker the line, the greater
the shield strength. Shield strength is also indicated by color: green, yellow and red
indicate decreasing shield strengths.

Strategy note: The shield facing an enemy will take the brunt of an attack. Rotating
the ship to present a stronger shield will provide more protection.

SSttaattuuss WWiinnddooww
Miscellaneous statistics such as power usages, a list of attacking ships, etc. will
appear in the status window immediately below the Shield Status display. Certain
parameters will be colored yellow or red to warn of impending problems.

SShhoorrtt--RRaannggee SSccaann
The short-range scan is located in the upper center of the screen and takes up
approximately 50% of the available screen real estate. The short-range scan shows
ships, planets, and starbases in the immediate area. The long-range scan is used to
view the location of all objects. Friendly ships will be colored in green, potential
enemies are in yellow and starships actively attacking your ship will be in red.
Borders between quadrants will be displayed as dashed gray lines.

All of the displayed objects are selectable by the mouse. If any displayed object is
clicked upon, it will be set as the current target. Information about the selected
target will be made available in the Target Display. The current target is used by all
of the Weapons Controls to lock weapons and it serves as a default destination for
making a course change request using the Navigation Controls.

TTaarrggeett DDiissppllaayy
The target display is immediately below the Short-Range Scan. Information
pertaining to the target’s distance from your ship, speed and heading will be
displayed. The current target is used by all of the Weapons Controls to lock weapons
and it serves as a default destination for making a course change request using the
Navigation Controls.

DDiissttrreessss BBuuttttoonn
The distress button is located below the Target Display, which is found just below the
Short-Range Scan. If a starship is under attack, a player can press the button to
send a distress message and friendly nearby ships may come to assist the embattled
starship.

8

NNaavviiggaattiioonn CCoonnttrroollss
The navigation controls are on the upper-right hand side of the display. The ship’s
current course and speed are displayed in yellow at the top and the ship's desired
course or destination is displayed at the bottom in green. A compass rose is
displayed in the middle. The current course is drawn as a dashed yellow line and the
desired course is drawn as a solid green line.

Controls to set the ship’s course, speed and destination are made available below the
information display. Course and destination are mutually exclusive. If a destination
is selected, the autopilot will compute the required course automatically, even if the
destination object moves. Destinations are specified as the short name of the object
(e.g., Vulcan vs. Federation Planet Vulcan). The field will automatically be filled in
with the name of the last target selected from either the Short-Range Scan or Long-
Range Scan displays.

Strategy Notes: It takes a while for a starship to speed up or slow down. The faster
a starship goes, the slower its rate of turn, thus one must slow down to make sharp
turns. Distance traveled is a quadratic function based on speed.

LLoonngg--RRaannggee SSccaann
The long-range scan shows the galaxy of objects and their relative positions. It is
displayed below the Navigation Controls on the right hand side of the screen. It
provides functionality very similar to that of the Short-Range Scan, but it shows a
much larger view. Friendly objects are in green, enemy objects are in red, and
starship associated with the display will be in white. Users can also select targets by
clicking on icons in the long-range scan.

Figure 5

Phaser 1
Power: 15
Target:
Not Locked

Phaser 2
Power: 15
Target:
Not Locked

Phaser 3
Power: 15
Target:
Not Locked

Phaser 4
Power: 15
Target:
Not Locked

Lock

Lock

Lock

Lock

Tube 1
Tube Loaded
Target:
Not Locked

Tube 2
Tube Loaded
Target:
Not Locked

Lock

Lock

MISSION CODENAME: Kappa Delta 4

The Federation Planet Babel was attacked by enemy forces. It is imperative that
you deliver key medical supplies within 2.5 StarDays.

30
seconds

Change Automatic Update Interval

WWeeaappoonnss CCoonnttrroollss
The weapons controls span the display from left to right just above the Messages
Window and the information about the Current Mission. These controls indicate the
operational status of each weapon and they permit the weapon to be locked and
fired. A weapon can be fired no more than once per turn; once fired, the
corresponding fire button will be disabled until the weapon recycles. A weapon’s
target lock is taken from the target selection window. A weapon will remain locked

9

on a target until the target is destroyed or a new target lock is requested. It is
permitted to have each weapon locked on a different target.

CCuurrrreenntt MMiissssiioonn
The current mission is displayed in the bottom right-hand side of the screen below
the Weapons Controls. If no messages are available, the mission display may
extend across the entire bottom of the screen.

MMeessssaaggeess WWiinnddooww
Status messages will be displayed in the very bottom left hand side of the screen.
Distress messages from other ships, messages from command, reports on an attack,
warnings about having passed into enemy space, etc. will be appear here.

UUppddaattee IInntteerrvvaall
A starship's status display is normally automatically updated every 30 seconds;
however, this can be set to a user-specified rate by entering the desired rate in
seconds and pressing the Change Automatic Update Interval button, which is found
at the very bottom of the page.

3. Using Multiple Servers

IImmpplleemmeennttaattiioonn ooff tthhee OOrriiggiinnaall SSttaarrsshhiipp
The original 1987 version of Starship was implemented using two separate
applications (called starsim and startty) that executed on computers running UNIX
System III or a subsequent variant (e.g., 4.3BSD, SunOS, Unicos, etc.). The single
starsim main process implemented the simulation. A distinct startty user interface
process was started on each player’s terminal (which were typically attached via RS-
232C cables). Each startty task accepted input typed by a player and displayed any
requested information. Communication between the starsim simulation process and
the various startty player interface processes took place over named pipes or
sockets. This organization is graphically illustrated below in Figure 6.

10

Figure 6

Terminal 1 Terminal 2 Terminal 3 Terminal 4

startty for
Terminal 1

startty for
Terminal 2

startty for
Terminal 3

startty for
Terminal 4

starsim
Starship Simulator

Unix Host
(runs all processes)

While the communications links illustrated in Figure 6 were usually physical RS-232C
cables associated with dumb terminals, the terminals could be logically realized as
pseudo-ttys and displayed across a network using the xterm application of X10 (or
the X11 of today). Regardless of how a player’s terminal was realized, all of the
processes associated with the original Starship game had to run on the same
physical host.

Distribution of the Simulation
As noted above, the original version of Starship was very host-centric. Although the
user interface component was broken out as a separate process from the very start,
the use of named pipes created a requirement to have all processes reside on the
same host. The most natural next step in distributing the workload among multiple
machines was to remove the individual user interface tasks from the simulation
server and place them on separate machines. This was easily achieved by altering
the code to use the socket API introduced in BSD UNIX, thus yielding the capability
to use TCP connections (or the equivalent). Distribution of the user interface tasks
could help slightly with the scalability of the simulation; however, the original dumb
TTY interface provided by the startty application was neither CPU nor resource
intensive, thus the quantity of work that could be offloaded was not significant.

In 1994, many of the core Starship concepts were used in the implementation of a
completely distributed, load-balanced, fault-tolerant simulator with event-driven
graphic user interfaces. The current version of Distributed Starship is quite similar
to the 1994 implementation, with the significant exception that it uses modern web
browsers to provide a user interface rather than a DRAGONS Display Manager.
While the use of a web browser to implement a real-time display is clearly less than
optimal, it is adequate for the purposes of the game.

Since the simulator essentially performs a series of computations against each
starship, starbase and planet, one obvious approach to exploit multiple physical
machines would be to use a job distribution facility, such as the class JobController.

Another obvious distribution point is the web browser that displays each player’s
user interface: since a web browser does not have to run on the same host as a web

11

server, it is clear that the graphics processing needed to render a page can be
offloaded to the user’s machine. The next obvious item of processing that could be
offloaded is the creation of the dynamically generated HTML pages and imagery for
each user’s display; however, in order to generate such dynamic content, the
responsible application code needs access to all of the state information maintained
by the simulator (such as a starship's speed and course, deflector shield status, etc).
The short- and long-range scan displays are particularly expensive since they make a
request of every single object processed by the simulator.

While the transparently distributed nature of the FARGOS/VISTA Object Management
Environment would permit the processing to be handled by another host, the
overhead of sending messages between physical machines would overwhelm the
benefit gained by offloading computations onto other machines. Consequently, a
traditional approach that uses a job scheduling application, such as JobController,
would not be an effective means to separate the per-user graphic user interface
processing from the main simulation.

AAddddiinngg aa SSllaavvee SSeerrvveerr
Distributed Starship handles both problems by exploiting some of the more novel
capabilities of the underlying FARGOS/VISTA Object Management Environment.
When a new slave server registers itself with the master Distributed Starship
server, a copy of each of the simulation objects is transferred to the slave. This is
achieved by sending each object an encodeObject request. The encoded instance
is then transferred into the slave system by sending the ObjectCreator object on
the slave host an importObject request. As a result, all the participating systems
use identical object Ids to identify information about a particular starship, but utilize
their local copy whenever an application needs to retrieve information. Whenever a
new starship object is created during the course of the simulation, it is propagated to
each of the currently registered slaves using the same mechanism.

This organization yields several benefits. The most obvious is that it eliminates the
storm of inter-host messages that would be sent by a conventional design that had
everything either maintained by the master system or partitioned the objects across
the processor pool of participating slaves.

When the simulation needs to process a game play step, the master instructs the
slaves to perform the needed calculations on a given set of objects. Once a slave is
informed about the objects it needs to process, it begins the necessary
computations. All of the slaves should be performing work in parallel, although there
will be some variances. Some of the factors that influence processing time are:

• The order in which they receive their respective instructions affects when
computations can begin: the sooner a slave is told what to do, the sooner it
has an opportunity to begin working.

• There may be differences in raw CPU speed (a 360 MHz Sun UltraSPARC IIi
vs. an 700 MHz Pentium III SMP)

• There may be existing load that is unrelated to the game. With three decades
of support for multi-user operation under its belt, UNIX servers often have
more than one thing to do at a time.

Whenever a slave server updates a simulation object, it sends a copy of the changes
that it made to the master. The master will in turn distribute the updates to the
other slaves. By sending only the changes, two obvious benefits are obtained:

1. The amount of data sent is minimized.

12

2. It is possible for parallel work to be performed on an object as long as distinct
attributes are modified. For example, the course and speed of a starship can
be computed at the same time firing of a weapon is processed.

Note: if the transmission of the updates could be sent using multicast, it would be
more optimal if the slave could forward the updates directly to all of its peers in a
single operation. Unfortunately, in practice, this is not feasible. Sending the
updates to the master might appear to introduce additional overhead: a hop to the
master and then onto a slave peer. It does not. The slave originating the update
would have to send the update message to the master regardless. Since the
responsibility for transmitting the updates to all of the remaining slave peers resides
at that point with the master and the slave sends no further messages, no additional
overhead is incurred.

LLoossss ooff aa SSllaavvee SSeerrvveerr
While the design of an application that can tolerate the loss of distributed
computations in progress is not an oft-practiced art, it was a guiding principle behind
the design of the Distributed Starship classes. The 1994 version of Distributed
Starship was intended for use at technically oriented trade shows (such as InterOp)
where all of the demonstration machines were networked together3. Pre-configured
copies of the slave server were made available for downloading from a server
running in the demonstration booth. Individuals working for their respective
companies could install the slave software on a machine running in their booth.
Once started, it would connect back to the master machine and participate in sharing
the workload. The graphical user interface component, implemented in 1994 using a
DRAGONS Display Manager, was supposed to be run on a user’s local machine and
be connected to their local slave process, thus keeping all of the computations
associated with their display off of the master server. It was possible, however, they
that connected directly to the master server. The wide variety of connection options
is still present in today's FARGOS/VISTA-based implementation.

One fact was known to an absolute certainty: no other company would have shipped
their equipment to a trade show just to play Distributed Starship. Instead, their
staff and computers would have been sent in order to demonstrate their own
products. Thus, any slave system that was added to the processor pool could be
expect to be yanked out of service at any moment when its owner decided to return
it to the purpose for which the machine was brought.

Because of this operational constraint, Distributed Starship was designed to
tolerate both the unexpected appearance and loss of any (or all) of the slave servers.
Recall that all of the servers are provided with a complete duplicate of the current
state of the simulation when they first register with the master. This means that the
master server can accept new registrations at anytime: it does not matter how
many hours the simulation has been underway; whenever a new slave is registered,
it is provided a snapshot of the current state of the simulation. At the beginning of
every step in the simulation, the master spreads the computational workload
amongst the currently registered slaves. Since a processing step takes place every
few seconds, a new slave system can be utilized in short order.

When a slave is lost during the idle period between simulation steps, it is merely
deleted from the processing pool and the work to be done during the next step is

3 It was implemented as a demonstration application to be used at trade shows by
Netsmiths, Ltd., a company created by IBM Research to sell the Distributed Reliable
Architecture Governing Over Networks & Systems (DRAGONS).

13

spread amongst the remaining (N – 1) slaves. The only interesting case comes when
a slave is lost during a simulation step. Since the slave sends back updates to the
master as they are computed, the effect on the simulation ranges from none (all of
the updates were computed and sent prior to failure of the slave) to a complete loss
of every result expected from the slave for that processing step.

There are several approaches that can be taken to recover the lost transactions.
One option is to delegate the work that was not completed to another slave before
moving onto the next simulation step. A more pragmatic approach is to just ignore
the failure and have the work processed on the next round. It is crucial to recall that
the simulation is implemented as a series of state transitions. While the slave server
was lost, the original state of the objects and the corresponding inputs that were to
be applied against them where not lost—they are duplicated in all of the peer
systems. Thus, the unexpected failure of the slave system does not mean that a
user's request to fire a photon torpedo is dropped; instead, it means that the launch
of the torpedo was delayed by one turn. Although the design of Distributed
Starship permits the system to be resilient, the approach to recovery described
above is not without effect: in the meantime, starships that were processed by the
surviving slave systems were able to move, thus they might now be closer or further
away, their shields might have had time to strengthen, etc.

4. Applying the Concepts to other Applications
Unlike most business applications, computer games usually have significant real-time
performance constraints. For example, a game that attempts to provide a frame
rate of 30 frames a second will be unplayable if the frame rate drops to 4 frames a
second. Even an occasional stutter will still be quite noticeable to the player. Due to
its use of a web browser to support a graphical user interface, this version of
Distributed Starship does not attempt to provide high frame rates. It does,
however, demonstrate several techniques for scalability, fault-tolerance and some
unique capabilities of FARGOS/VISTA that are directly applicable to more utilitarian
applications. If one substitutes the word “starship” for “independent transaction”
then many of the implementation details remain useful. Rather than plot courses,
fire weapons and send out distress messages, an independent transaction could be
controlling an automated tool on a factory floor, monitoring the performance of a
network or system, supporting a distributed whiteboard for an online meeting,
simulating a chemical process, etc.

The level of fault-tolerance supported by the current Distributed Starship is useful
for many environments, but the master server remains the one susceptible potential
point of failure. That failure point can be removed by introducing a fault-tolerant
transaction monitor, such as FARGOS/SolidState (which provides Byzantine fault-
tolerance). Such a resulting hybrid system yields the best of both worlds: near
linear scalability with the survivability of a Byzantine fault-tolerant system.

