
Version: 2/6/2002 4:23 AM

AAnn IInnttrroodduuccttiioonn ttoo
PPrrooggrraammmmiinngg uussiinngg

OOIILL22

ii

An Introduction to Programming using OIL2
FARGOS Development, LLC
757 Delano Road
Yorktown Heights, NY 10598
http://www.fargos.net
mailto:support@fargos.net

Copyright 2001 - 2002 FARGOS Development, LLC

NNoottiiccee ooff RRiigghhttss
All rights reserved. This document may be rendered into whatever form is useful for
the user, including electronic transmission or printing, so long as the content is not
altered.

TTrraaddeemmaarrkkss
FARGOS/VISTA, FARGOS/SolidState and FARGOS/SolidConnection are trademarks of
FARGOS Development, LLC.

AAbbbbrreevviiaattiioonnss
FARGOS Development, LLC is a Limited Liability Company registered with the State
of New York. It is required to identify itself as such in its name, hence the “, LLC”
suffix. For purposes of readability in this document, the “, LLC” suffix is sometimes
dropped. The phrase “FARGOS Development” always denotes “FARGOS
Development, LLC” and is not intended to suggest any alternate form of
organization.

NNoottiiccee ooff LLiiaabbiilliittyy
Information in this document is distributed on an “As Is” basis, without warranty.
While every precaution has been taken in the preparation of this document, FARGOS
Development, LLC shall not have any liability to any person or entity with respect to
any loss or damage caused or alleged to be caused directly or indirectly by the
instructions contained within this document or by the computer software or hardware
products described in it.

http://www.fargos.net/
mailto:support@fargos.net

iii

Contents
Notice of Rights..ii
Trademarks ...ii
Abbreviations ...ii
Notice of Liability..ii

1. Preface ...4
2. An Introduction to Programming Using OIL2..5

What is an Object? ..5
Defining Classes..6

Class Names ..6
Namespaces and Version Ids..7
Instance Variables ..7
Inheritance Hierarchy..8
Class Definition Syntax..9
Methods ..9

Compiling OIL2 Source Code...10
Configuring the Development Environment ..11
Invoking the OIL2 Compiler ...11
The Hello World Program ...11
Running an OIL2 Application ..12

3. Executable Statements ...13
A Temperature Conversion Chart...13
Arithmetic Precision ...14
Method Arguments ..16
Sending Simple Messages...16
Strings...17
Simple Input/Output in OIL2...19
Object Creation ...20
Remote Procedure Call-style Sends..21
Special Operators ..21
Reading Files ..22
Arrays..27

The for-Loop ..28
Complex Data Types ..29

Sparse Arrays ..29
Associative Arrays ..31
Sets..31

Functions and Methods...31
Global Variables ..36
Preprocesor Directives ...36
Multi-Dimensional Arrays..38

4

1. Preface
Most FARGOS/VISTA-related documentation assumes a modest level of programming
and system administration expertise. While truly expert programmers receive
significant1 productivity gains by using FARGOS/VISTA technologies, it can be argued
that, ultimately, productivity gains are the sole benefit that such expert
programmers obtain. This is because, given sufficient time, they could write all of
their applications as handcrafted assembler language. As a practical matter,
however, no one has that much free time and productivity gains enable the
implementation of applications that would otherwise be impossible due to time
constraints.

The majority of programmers, however, are not experts. One of the great features
of the FARGOS/VISTA suite of technologies is how even novice programmers are
able to quickly implement distributed applications that would otherwise be beyond
their abilities. For such programmers, the issue is not merely productivity but
instead the reduction in the complexity of a problem by such a dramatic amount so
as to make its solution feasible.

Object Implementation Language 2 is one of the cornerstones of the FARGOS/VISTA
suite. Programmers with C/C++ experience will be able to extract the nuances of
the language by reading the OIL2 Reference manual and can dispense with this
guide, which is intended for individuals who have never written a program before or
consider themselves inexperienced with C or object-oriented programming.

This document is based on course materials development for and used by an EECS
181 (Introduction to Computers) class in the mid 1980’s at the University of
Michigan. It was originally oriented around the C programming language, but it has
been revised and extended to now use examples written in Object Implementation
Language 2. In contrast to most manuals, an informal style has been adopted in
keeping with the tutorial nature of this document’s contents. The reader is often
directed to take certain actions, such as think about a particular issue or run an
example program.

1 Usually 6- to 10-fold improvements, so what might normally take a year of
development can be done in a month or two.

5

2. An Introduction to Programming Using OIL2
As suggested by its name, Object Implementation Language 2 (OIL2) is an object-
oriented programming language. Programmers use it to create applications that are
implemented as objects that interact with each other. Objects are instances of
classes. If you have not had exposure to these concepts before, they can sound
quite technical, so we should agree on some common definitions:

Data: an arbitrary piece of information that is stored or manipulated by a
computer. It can be a number (e.g., 2, 3.14, -1, etc.), letters or arbitrary
characters (someone’s name, a paragraph of text from a novel, etc.), or some
arbitrary content. We use the word data whenever we want a generic term to
talk about information in the computer.

Type: semantic information associated with data that allows its meaning to
be determined. Some types are found in almost all programming languages
because computers have been designed to manipulate them directly. One of the
most common simple types of data is that of an integer (e.g., …, -2, -1, 0, 1, 2,
…). Real numbers (often called floating-point due to the way in which they are
represented by the computer) are another math-oriented example. Character
data (commonly referred to as strings) is yet another primitive type.

Class: a programmer-defined type that defines two things: a collection of
data that is maintained together and a set of operations that can be performed
against such data collections. The grouped data items are referred to as instance
variables and the operations are referred to as methods. OIL2 programmers
write class definitions that describe the types of data to be stored and the
programming instructions that implement each method. Virtually every
programming example in this document will be of a class.

Object: a distinct physical instance of a collection of data that defined by a
class. A class can have zero, one or many object instances. All instances of a
class have the same methods. As a crude real-word analogy, consider the
process of making decorative sugar cookies. A class definition would correspond
to the cookie cutter that cuts a cookie from a sheet of dough. An object would
correspond to a cookie. One cookie cutter might be used to create several
cookies. While very similar in appearance, each cookie is physically distinct from
the others.

Application: a generic term for a complete computer program that performs
some (hopefully useful) task. Some applications are very simple (such as the
examples found in this guide); others are quite complex. Programmers create
complex applications by creating smaller pieces and combining them. These
smaller pieces are called subroutines in some languages; in OIL2, they will be
implemented as methods of a class.

What is an Object?
You would be correct if you suspected that the meaning of the word object is an
important concept for the discussion at hand. An object is an instance of a distinct
collection of data that is associated with a particular type definition, which is called a
class. The class defines what data is grouped together and the operations that can
be performed against it. Determining what data is best grouped together is
something of an art form: as a rule, a programmer should try to minimize the

6

number of distinct items that are grouped together as this will tend to keep the class
well-focused.
As an illustration of the concept, consider the implementation of a checking account
as a class. There are two obvious candidates for instance variables:

• The checking account number which uniquely identifies the account
• The current balance

As far as methods (i.e., operations) go, two should come immediately to mind:

• Deposit funds
• Withdraw funds

Consider: are there any other useful operations associated with a checking
account?2

Note the separation between the data (such as the account balance) and the
operations (like deposit). This separation is one of the key characteristics of object-
oriented programming. While object-oriented programming was invented in the
1960's, it only started to become popular in the late 1980's and achieved something
of a cult status in the 1990s. Prior to this, most programmers used procedural-
oriented languages that imposed little formal structure. The results were programs
that were hard to enhance and yielded very little reuse of previously written code.
The other major paradigm of programming languages is functional languages.
Functional programming languages are well suited for certain problems; however,
they require a certain mindset that is not easily grasped by the average practicing
programmer.

Defining Classes
Some object-oriented languages, such as C++, enable, yet do not require, the
development of object-oriented programs. Thus they still permit programmers to
write in the procedurally oriented style so common for over two decades but now
frowned upon. In contrast, OIL2 mandates the use of an object-oriented
programming style: no half-measures are permitted. Therefore, we have to begin
immediately with a discussion of the process of defining a class instead of
encountering this issue near the very end of an introductory text or omitting its
discussion altogether. There are four attributes associated with an OIL2 class:

• the class name
• the instance variables
• the inheritance hierarchy, which must eventually inherit from the class

Object.
• the methods, which must include the methods create and delete.

CCllaassss NNaammeess
In OIL2, all classes have a name that is defined by the programmer. It is considered
good programming practice for the name of a class to have some relationship to its
purpose, but this is not a requirement. Thus, we might choose a name like
CheckingAccount for a class that implemented the checking account example
discussed above.

OIL2 coding convention: it is recommended that all OIL2 class names begin with
a capital letter.

2 A balance inquiry will turn out to be a valuable addition.

7

NNaammeessppaacceess aanndd VVeerrssiioonn IIddss
For the sake of completeness, we note that OIL2 classes are actually identified by
the combination of three elements:

• a name space
• the class name
• the class version Id

Namespaces solve the potential problem of two programmers accidentally choosing
the same name for a class that they developed independently (e.g., MyClass): if
both programmers place their new class into their organization's respective name
space, the two implementations can be distinguished (e.g., CompanyA.MyClass vs.
FirmB.MyClass). Namespaces can also be used to allow locally implemented versions
of facilities to replace default versions. Class version Ids address the problem of
updating the implementation of code into already running systems or when
persistent objects are in use. FARGOS/VISTA-based systems can support truly non-
stop operation, so these features are required; most systems would require a restart
of the application with the new code.

We will ignore these capabilities and just use their default values in our examples.

IInnssttaannccee VVaarriiaabblleess
Instance variables define the data that is to be maintained by each individual object.
Each instance variables is identified by a unique (to the class) name and have a type
declared. OIL2 supports several native types. As defined in the OIL2 reference
manual, these types are:

Table 1

Keyword Type Comments

nil A null value A special value to indicate no value set

int

int32

32-bit integer A normal integer; int and int32 are synonymous.

int64 64-bit integer Sometimes, 32 bits are not enough.

float 32-bit floating
point

Single precision floating point.

double 64-bit floating
point

Double precision floating point.

fixed fixed point
decimal

Arbitrary precision arithmetic, useful for currency.

string octet string Can contain embedded nulls; also keeps track of
character set (e.g., ASCII, EBCDIC, Unicode, binary);
reference counted implementation in FARGOS/VISTA.

oid object Id Reference to an object.

array sparse array Can be subscripted by non-contiguous int32 values;
reference counted implementation in FARGOS/VISTA.

assoc associative
array

Subscripted by strings (binary data OK); reference
counted implementation in FARGOS/VISTA.

8

set set Really a list that preserves order; reference counted
implementation FARGOS/VISTA.

nlm native
language
message

Internationalized messages.

any any type Any of the above types can be used.

The type any is quite useful since the corresponding variable can hold any kind of
data and is not supported by many programming languages. If one does not know
what the type of a variable will be, the variable must be declared as being of type
any. One might ask why an OIL2 programmer should not always use the type any.
The reason is that declaration of the exact type of a variable enables the compiler to
catch some programming errors at compile time and generate code that is more
efficient.

Recommendation: if you know the type of a variable, declare it correctly rather
than use the type any.

A variable declaration always begins with a type name. The type name is followed
by a list of one or more identifier names. Some examples:

 int j, k;
 float angle, balance;
 string s, mess;
 any v;

IInnhheerriittaannccee HHiieerraarrcchhyy
Inheritance is an extremely powerful facility that enables the construction of reusable
components and elegant designs that are easy to maintain and enhance.
Unfortunately, making effective use of inheritance requires appropriate models. It
takes some practice for programmers to be able to create useful class hierarchies.
That said, the basic concepts are not very difficult to understand.

Formally, inheritance provides support for polymorphism, which means that an
object may appear to be of more than one class. The key concept is that a class
provides a specialization of a class from which it inherits. As an example, consider a
hypothetical class WheeledVehicles, which represents information about vehicles that
have wheels. Specialized classes TwoWheeledVehicles and FourWheeledVehicles
implement further specialization of the class WheeledVehicles. Each of those classes
can be further specialized: Bicycle and Motorcycle could be specializations of the
class TwoWheeledVehicles; Automobile and PickupTruck could be specializations of
the class FourWheeledVehicles. This hypothetical hierarchy illustrates
polymorphism: given an instance of Automobile, an application can treat it as either
an Automobile object or a FourWheeledVehicles object or a WheeledVehicles object.
It cannot, however, be viewed as a PickupTruck object, or TwoWheeledVehicle
object.

Some object-oriented languages are restricted to only supporting single inheritance,
thus a class can directly inherit from only one class. In contrast, OIL2 supports
multiple inheritance. Multiple inheritance permits a class to inherit the capabilities of
more than one class. Using the prior hypothetical example, one could introduce a
class MotorizedVehicle, which could then be used by PickupTruck, Motorcycle and
Automobile. Note, if only single inheritance was supported, this focused

9

implementation could not be used: one would have to implement
MotorizedTwoWheelVehicles and MotorizedFourWheelVehicles to handle the situation
created by human-powered vehicles like Bicycle.

Most object-oriented languages do not require that a class inherit from some other
class; however, OIL2 does require that all classes must eventually inherit from the
ultimate base class Object. Therefore, all OIL2 classes inherit from at least one
class, which often is just Object.

CCllaassss DDeeffiinniittiioonn SSyynnttaaxx
Class definitions are introduced by the keyword class. The prototype appears
below:

 classclassclassclass [NameSpace]ClassName[((((versionID))))] {{{{
 typeName var1 [, var2 …];
 }}}} inherits frominherits frominherits frominherits from ClassName1 [, className2 …];

As one can see, the class definition permits the specification of the name space, class
name, version Id, instance variables, and the class from which the new class
inherits. The declaration of the CheckingAccount class that was previously discussed
appears below:

class CheckingAccount {
 string accountId;
 float balance;
} inherits from Object;

Figure 1

It is worth noting that the definition is quite concise, yet readable.

MMeetthhooddss
As explicitly noted by its name, Object Implementation Language 2 is an
implementation language, not merely a definition language. The key feature of a
programming language is to describe operations that a computer should perform. In
OIL2, these instructions are written as methods of classes. Every OIL2 needs to
define at least two methods, which are create and delete. The create method is
executed when a new object of the class is created; the delete method is executed
when an object of the class is deleted. Quite useful classes can be implemented that
only have these two methods; however, most classes implement additional methods
that provide useful class-specific functionality.

While not necessary, most methods accept some arguments at runtime that affect
their operation. Many programming languages expect a method to take a fixed
number of arguments and require the programmer to assign a name to each
argument so that it can be addressed. In contrast, OIL2 makes it trivial to work with
routines that take a variable number of arguments. One way in which OIL2 enables
working with variable number of arguments is that it always makes available the
arguments to a method in the predefined array argv and it provides a count of the
total number of arguments in the predefined variable argc. For methods that do
expect a predetermined number of arguments, it is possible to declare each
positional argument. This has the benefit of making it more convenient to access a
given argument and it provides the compiler with type information that it would
otherwise not have.

A method definition has the following prototype:

10

ClassName::::methodName[((((typeName arg1 [,,,, typeName arg2 …]))))]
{{{{
 typeName var1 [var2, …];
 executableStatement;
 …
}

Although each programming language is different, one can expect to find certain
common features and capabilities in each. For example, it should not come as a
surprise to find that programs have a starting point. We cannot have the computer
start executing our program at just any spot, thus a language needs some means of
indicating where is the program's beginning. In OIL2, methods start execution at
the top and terminate when the flow of execution reaches the bottom of the method.
Methods can also be explicitly terminated by the OIL2 exit or return statements.

Continuing with our illustrative example of a checking account (review Figure 1 for
the class definition), the create method will probably set the account's Id and
opening balance. The deposit method increases the available balance by the amount
of the deposit, whereas the withdraw method should probably only process the
request if sufficient money is available.

CheckingAccount:create(string acctId, float openingBalance)
{
 accountId = acctId;
 balance = openingBalance;
}

CheckingAccount:delete() {} // null method since nothing needs to be done

CheckingAccount:deposit(float depositAmount)
{
 balance += depositAmount;
}

CheckingAccount:withdraw(float desiredAmount)
{
 if (balance >= desiredAmount) {
 balance -= desiredAmount;
 return (desiredAmount);
 }
 return (0);
}

Figure 2

The majority of this document deals with the use of OIL2 executable statements.
Despite not having yet covered these statements, the source code above (Figure 2)
should be understandable with a little effort. The notations "+=" and "-=" mean add
or subtract a value, respectively, from the variable on the left hand side. The
expression "balance >= desiredAmount" returns a true value if the value of the
variable balance is greater than or equal to the value of the variable desiredAmount.

Compiling OIL2 Source Code
The best way to learn or get a feel for a programming language is to actually see
some examples. For the remainder of this document, we will be working with
complete examples that you will probably want to try out on your computer. OIL2
source code is stored as plain text files and it is suggested that OIL2 source files be
named with a .oil suffix. Developers should use the text editor of their choice to
create and edit OIL2 source files; the compiler can handle source code created on
platforms with incompatible notions of end-of-line markers.

11

CCoonnffiigguurriinngg tthhee DDeevveellooppmmeenntt EEnnvviirroonnmmeenntt
Before you can compile and run applications written in OIL2, the system
administrator of your computer must install the FARGOS/VISTA Software
Development Kit. Your organization may have purchased a FARGOS/VISTA license
that permits their developers to generate native object code; however, we will focus
only on the generation and use of OIL2 Architecture Neutral Format (OIL2 ANF)
object code. Your system administrator should have set the VISTA_ROOT and
VISTA_UNAME environment variables appropriately:

• VISTA_ROOT must be set to point at the location where the software was
installed.

• VISTA_UNAME is set to identify the type of the underlying system (Windows
for Microsoft Windows variants or the result of the uname command on Unix
variants).

Details of the installation process are provided in the FARGOS/VISTA Installation
Guide. For convenience, the directory identified by
$VISTA_ROOT/$VISTA_UNAME/bin should be added to your executable search
PATH.

IInnvvookkiinngg tthhee OOIILL22 CCoommppiilleerr
The OIL2 compiler executable is named oil2_parse. There is also a script, named
oil2, which invokes the oil2_parse program after running a source file through the
local C preprocessor. The oil2 script permits a programmer to use conventional C
preprocessor directives, but it is wasted overhead if an OIL2 source file does not use
any such directives. Also, if the local system does not have a C preprocessor, the
script will not work. For those reasons, none of the examples in this document will
use C preprocessor directives and it is suggested that the oil2_parse program be
used directly. The OIL2 compiler is instructed to generate OIL2 Architecture Neutral
Format object code by the –oil2 option:

 oil2_parse –oil2 srcFile.oil

The resulting object code file will be generated with the .oil suffix of the source file
name replaced with .o2o (for OIL2 Object).

TThhee HHeelllloo WWoorrlldd PPrrooggrraamm
From its appearance in the book the "C Programming Language", a simple program
that displays the message "Hello, world" has become one of the most common
introductory examples of a language. Consider the following:

%include <OMEcore.o2h>

class HelloWorld {
} inherits from Object;

HelloWorld:create()
{
 display("Hello, World!\n");
}

HelloWorld:delete() {}

Figure 3

12

The directive %include is directly supported by the OIL2 compiler and is
conceptually identical in behavior to the #include direction recognized by C
preprocessors. The OIL2 compiler will attempt to locate and insert the indicated file
at that point in the parse stream. Most OIL2 programs will use the illustrated
directive to include definitions of the standard OIL2-callable interfaces provided by
the FARGOS/VISTA Object Management Environment. The angle-brackets ("<" and
">") are used to indicate that the file should be found in a special place used by
everybody (normally, the directory $VISTA_ROOT/oil2Include).

The output of information is a crucial issue in every program. If a program never
outputs a single item of data, it serves no purpose except to use up CPU time. In
OIL2, interactions between objects are performed by sending messages using the
send statement. The standard class IOobject provides the means to access a
variety of I/O devices, like files and network communications links, by representing
them as objects.

For efficiency, some facilities are provided by the FARGOS/VISTA Object
Management Environment via functions. The display() function used above is one
such example. This is used for debugging purposes: it converts and displays on
standard output any data that is passed as its arguments. The ability to call
functions is part of the specification of OIL2 as a language; any available functions
are either part of the FARGOS/VISTA Object Management Environment or locally
available enhancements.

If we examine the program, we see the expected declaration of the create method.
We also see a set of braces ("{" and "}") that enclose the body of the method.
Braces are used in OIL2 to denote blocks of statements. They are the equivalent of
begin and end in languages such as Pascal. For every "{", there must be a
matching "}" (as you would hope in order to preserve symmetry). The body of this
method is quite short, consisting of a single statement, namely the call to the
display() function. Note the semicolon (";") after the statement. All statements in
OIL2 are terminated by a semicolon. There are no exceptions, no special cases.

You may have wondered what is the meaning of "\n"? The display() function does
not automatically move to a new line after printing. This is good—we can do a lot
more because of this, but to get text to start on a new line, we must explicitly output
the new line character. We cannot type this character, nor do we know what the
coded value is on a particular system (not that we are really interested). There are
several special characters that are not readily typed—the new line character is just
one of them. OIL2 allows us to specify these characters using "escapes". The
escape character is the backslash ("\"). What follows the backslash has a special
interpretation. In this case, "\n" represents the new line character. Therefore, the
"\n" in the displayed string will cause subsequent output to start on a new line.

If the source shown above in Figure 3 is placed into a file named hello.oil, it can be
compiled into an OIL2 ANF file named hello.o2o by issuing the command:

 oil2_parse –oil2 hello.oil

RRuunnnniinngg aann OOIILL22 AApppplliiccaattiioonn
Once an OIL2 program is compiled, one typically wants to use it. Applications
written in OIL2 run inside a FARGOS/VISTA Object Management Environment. The
standard version of this system is made available via the vista executable. The
vista executable processes a file that directs it to create a set of objects as part of
its initialization process. These files are often referred to as "rc" files (rc stands for

13

run commands). To enable their use on desktop graphic user interfaces, it is
recommended that such files be saved with a .vrc suffix, which should have been
associated with the vista executable.

To run the "hello world" program described above in Figure 3, a two line rc file will
do the necessary work:

LoadOIL2File file:hello.o2o
HelloWorld

If the above was placed into a file hello.vrc, then the program could be run by
issuing the command:

 vista hello.vrc

Output similar to the following should be seen:

 FARGOS/VISTA Object Management Environment
 Copyright © 1999 – 2002 FARGOS Development LLC. All rights reserved.
 Hello, World!

While OIL2-based applications can be deployed in quite sophisticated scenarios,
including dynamically loaded from remote systems, the basic development scenario
holds:

1. An OIL2 programmer places source code into a text file with an .oil suffix.
2. The OIL2 source is compiled using the OIL2 compiler to generate some form

of object code, such as OIL2 ANF or native object code.
3. The generated object code is placed into a FARGOS/VISTA Object

Management Environment, often by dynamically loading the object code into
a running vista process.

4. At some point, the code is utilized by creating an object of a class
implemented in the object code file.

With this background, we can move on to the discussion of executable statements.

Exercise 1
Write an OIL2 program that prints your name out. Compile and run it. Modify it so
that you use two calls to display(): one to print your first name, one to print your
last. Compile and run this one too.

3. Executable Statements
The real work of an OIL2-based application is achieved through executable
statements. The discussion below will explore the use of many of the executable
statements available in OIL2.

A Temperature Conversion Chart
Let's enter a program that will print out a table of Fahrenheit/Celsius equivalents.
You may recall that to convert a Fahrenheit temperature to its Celsius equivalent,
you subtract 32 from the Fahrenheit temperature and multiply the result by 5/9 ths.
This may be expressed by the equation:

C = (5 / 9) (F - 32)

Let's write an OIL2 class to print out a conversion table for the integral Fahrenheit
temperatures from 0 to 100. How would we do this by hand?

14

First, we would start with the Fahrenheit temperature being 0.

Next we would do the calculation C = (5/9) (F-32) and write the result down.

Finally, we'd add 1 to the current temperature on which we were working. If the
result was less than or equal to 100, we'd do the next calculation.

An OIL2 class to do this follows:

/* Fahrenheit to Celsius conversion */
%include <OMEcore.o2h>

class FtoCtable {
} inherits from Object;

FtoCtable:create(int start, int last)
{
 int fahr;
 float celsius;

 fahr = start;
 while (fahr <= last) {
 // 5.0, 9.0 to denote real
 celsius = 5.0 / 9.0 * (fahr - 32);
 display(fahr, "\t", celsius, "\n");
 fahr = fahr + 1;
 }
 send "deleteYourself" to thisObject;
}

FtoCtable:delete() {}

Figure 4

If you put the program in a file ftoc.oil, it can be compiled using the command:

 oil2_parse –oil2 ftoc.oil

Test out the result by placing the following into the file ftoc.vrc:

LoadOIL2File file:ftoc.o2o
FtoCtable 0 100

Test the application:

 vista ftoc.vrc

This program demonstrates quite a few things. First, we had two variables in this
program, namely "fahr" and "celsius ". We declared both variables in the very
beginning of the program, before we used them. We declared fahr as an integer
("int "), because we knew it would always be an integer. We did not declare celsius
to be an integer because we knew that it was going to take on real values. Why?
Because of the multiplication by 5/9ths.

Arithmetic Precision
We normally represent real numbers in a computer using a format called floating-
point. That's why celsius is declared as "float". Floating-point numbers are stored
using a limited number of significant digits along with an exponent. This is very
much like scientific notation: 12500 is the same as 1.25 x 104. OIL2 supports two
kinds of floating-point numbers: single precision, which is selected by using the type
float, and double precision, which is selected by using the type double. As you may

15

have suspected, double precision values take up more space, but allow additional
significant digits to be maintained.

While floating-point values enjoy a very significant advantage with respect to the
speed of calculations, they suffer from one notable restriction, namely that they have
a finite number of significant digits. Consequently, very large or small numbers lose
digits. As an illustration, consider a floating-point representation that can only
maintain three digits of precision and uses base 10 exponents. It could thus
represent the number 1.23 as 1.23 E0, the number 12.30 as 1.23 E1 and 123 as the
number 1.23 E2. Unfortunately, the number 123.45 would still be represented as
1.23 E2, thus losing the .45. If the number was 12345.67, it would be represented
as 1.23 E4, an error of 45.67.

OIL2 also supports an alternative representation of real numbers that provides for
arbitrary precision. This type is called fixed for fixed-point. Since the underlying
architecture of most modern computers natively supports floating-point arithmetic,
the types float and double yield faster calculations. If arbitrary precision is
required then the type fixed is available, although such calculations are much
slower.

We now know how to declare variables that are going to only hold integers (use int)
and those that are to hold real numbers (use float). Note once again the semicolon
(";") after each and every statement. We call statements such as "int fahr;"
declaration statements.

We also see three assignment statements (e.g., "fahr = 0;"). Assignments in OIL2
take this format: variable = expression. Note the use of the equals sign ("=").

There is also a looping construct used in this program (the "while" statement). It
takes the following form:

 whilewhilewhilewhile ((((condition)))) statement;

More often than not, we want the while-loop to control more than one statement.
To do this, we enclose the statements in question between braces ("{" and "}").
Thus, whenever a statement can be used, we could also group a collection of them:

 while (condition) statement;

or

 while (condition)
 {
 statement1;
 statement2;
 /* more */
 statementn;
 }

There is no semicolon after the closing brace ("}") because the brace is not a
statement. What does the while-loop construct do? As long as the conditional
expression in the parentheses is true, the statements in the block enclosed by the
braces are executed3. Loops are of critical importance in programming. Without

3 What is truth? In OIL2, truth is actually represented by a zero value. Normally one
is never concerned with this: we write conditional expressions like "a < b" and let
the compiler generate the required code to do the test; however it is possible to take
advantage of this to write more efficient code at the expense of readability.

16

loops it would be easier to do the work by hand: you would have to type 100
equations and display() statements to solve this problem if we could not use a loop.

Comments are also illustrated. OIL2 supports two styles of comments. Multi-line
comments are enclosed between "/*" and "*/". Any text between these two sets of
characters is ignored by the OIL2 compiler. The other style treats all characters
remaining on a given line as a comment. Such single line comments are introduced
by the characters "//".

Finally, we see some real (pun intended) math: the expression 5.0/9.0 is evaluated,
and multiplied (the "*" operator denotes multiplication here) by the quantity fahr
minus 32. Why 5.0 / 9.0 instead of 5/9? If we wrote 5/9, the compiler would treat
this as an integer divided by an integer and would produce an integer result, which
would be zero. The 5.0/9.0 tells the compiler to divide real numbers and produce a
real result (which is stored in the computer as a floating-point number).

We also see some more features of the display() routine. This time we pass several
arguments. Once again, we see a "\n" to denote a new line and add the use of "\t"
to indicate a tab character.

Method Arguments
For the first time, we have taken advantage of the ability to pass arguments to
methods. All methods have two special variables that are pre-declared and always
available:

 int argc;
 array argv;

The number of arguments that were passed to a method is available in the variable
argc, thus if no arguments were passed, its value is zero. Likewise, if one argument
was passed, its value is one and so on. The actual arguments provided are made
available in the array argv. Unfortunately, our introduction to arrays does not take
place until later (see), so a fuller understanding will have to be deferred. For the
time being, note that the first argument provided is stored in argv[0], the second
argument is stored in argv[1], the third in argv[2], etc. OIL2 permits such
arguments to be declared, thus assigning them a type and alternative name. In the
example above, the first argument declared to be an integer (int) and called start.
Thus start is the same as argv[0]. The second argument in the example was
declared to be last, thus it serves as an alias for argv[1].

The ability to reference arguments using argc and argv is an extremely powerful
facility that makes it trivial to implement methods that handle a variable number of
arguments. This is something that is extremely difficult to do in C: it's fair to say
that most C programmers have never implemented a routine that took a variable
number of arguments because of its complexity. It is also convenient to be able to
assign a name to a positional argument, which makes the code more readable,
easier to maintain and permits the opportunity to give the compiler a hint as to the
expected type of the argument.

Sending Simple Messages
Our first use of the OIL2 send statement also appears the example shown in Figure
4. The send statement is one of the most important OIL2 statements (arguably,
only the assignment statement is more critical). In the OIL2 object model, the only
way that two objects can interact is by sending a message and the OIL2 send

17

statement provides this critical functionality. Two parts of every send statement are
required:

• the name of the method to be invoked
• the destination to which the message should be sent

In the example above, the name of the method being invoked is "deleteYourself",
which is a method implemented by the ultimate base class Object. The
deleteYourself method requests that the object perform the process of deleting
itself. The actual name of the method can be computed at run-time, but the most
frequent usage is use a string constant. The destination of the message is the object
can be specified as either an object Id or a string that indicates the name of a
registered service. If a string is used, the indicated name is automatically looked up
and converted to an object Id. In this example, the destination was specified as
thisObject, which is a special pre-declared variable. The variable thisObject holds an
object Id that refers to the object upon which the active thread is working.

Exercise 2
Modify the Fahrenheit-to-Celsius program to print out equivalents from 200 to 212
degrees Fahrenheit. Increment by 1/2 degree.

Exercise 3
Write a Celsius to Fahrenheit conversion program, and produce the table for the
integral Celsius degrees 0 to 100. The formula you need:

F = 9/5 * C + 32

Strings
We have dealt primarily with number crunching up to this point. Admittedly there is
a strong tendency to associate extensive calculations with computers, but is this a
realistic bias? Not particularly. There are many computer applications that do not do
a lot of work with numbers. A notable example is word-processing: it is concerned
with the manipulation of text, not numbers. Many programs used in commercial
data processing work must manipulate text as well as numbers (e.g., your name on
a bill).

How is this done? We use a data type called string. In OIL2, strings are a sequence
of characters. A string constant is declared using double quotes and we have seen
string constants used in every one of the prior examples. One of the simplest things
we can do with an OIL2 string is copy it:

 string s1, s2;
 s1 = "abc";
 s2 = s1; //s2 now is "abc"

The OIL2 runtime makes a string copy extremely efficient: even if the string’s length
is several megabytes, copying a string requires only a very small number of bytes
being moved or altered. The exact number of bytes moved or altered depends on
the memory-addressing model in use (32-bit vs. 64-bit), but it should be 16 or less.

One of the simplest string-related functions is the length() function, which returns
the number of characters in a string:

18

 int l;
 string s;

 s = "abc";
 l = length(s); // l is equal to 3

In the OIL2 runtime, the length of a string is always maintained with the string, so a
length() call is very efficient and takes a constant amount of time. In contrast, the
equivalent strlen() function in C or C++ takes time proportional to the length of the
string to compute its result. In OIL2, strings can be concatenated using the addition
operator:

 s = "hi" + " " + "there!"; // s = "hi there!"

Strings can also be compared using the relational operators, such as
“==”, “!=”, “<=”, etc. The equals and not-equals operators are
particularly efficient. For example, since OIL2 strings always know
their length without requiring any computation, strings of dissimilar
length can be immediately proven to be not equal by merely
comparing their respective lengths.

In addition to the length() function, there are two other fundamental
functions associated with strings: midstr(), which extracts a portion
of a string, and midchar(), which extracts a single character from a
string.

It is often necessary to determine if a given string is found within the contents of
another string, and if so, where it starts. Thus, "cd" is found at offset 2 in the string
"abcdef". How might we go about writing such code? We could start by looking for
the first character of the substring in the larger string and scan right until we found it
or reached the end of the larger string. If we find the character, then we check the
second character. If it does not match, we move right again and start over with
looking for the first character of the substring. When all of the characters of the
substring match, we have found it and can stop. This gives us:

19

%include <OMEcore.o2h>

class Local . Substring {
} inherits from Object;

Substring:create(string s1, string s2)
{
 int i, done;
 int i1, i2;

 i = 0;
 done = 0; // not done

 while ((done == 0) && (i < length(s2))) {
 i1 = 0; // start at beginning of s1
 i2 = i;
 while ((i1 < length(s1) &&
 (midchar(s1, i1) == midchar(s2, i2)))) {
 i1 += 1;
 i2 += 1;
 }
 if (i1 == length(s1)) done = 1; // reached end of s1
 else i += 1; // lookat next character
 }
 if (done) {
 display("Found ", s1, " at offset ", i, " within ", s2, "\n");
 } else {
 display("Could not find ", s1, " within ", s2, "\n");
 }
 send "deleteYourself" to thisObject;
}

Substring:delete() {}

Figure 5

The algorithm above seaches for a substring s1 within a string s2. The
presented algorithm was intended to be easily understood and it is not
the most optimal implementation of such an algorithm. A best of
breed algorithm that searches for a substring is used to implement the
findSubstring() function and OIL2 programmers should use it rather
than create their own implementation. Note: the implementation of
findSubstring() is optimized in several ways and recognizes several
special cases that can be handled by a single CPU instruction.

Simple Input/Output in OIL2
We have mentioned that if a program does not do any output, then it serves no
purpose. Well, if we can't do any input, we will also be restricted in our capabilities.
At first, most people are surprised at just how much you can do by just reading a file
starting at the beginning and reading until the end, but it turns out one can do quite
an incredible amount of useful work by doing just that. More than 100 Unix utilities
just do this, each with a specific purpose.

We are going to write a class that performs the same function as the wc utility,
found on computer systems running the Unix operating system. The program wc,
which stands for "word count", reads an input file and prints out the following
information: how many characters, how many "words", and how many lines are in it
(thus three separate items). This may not seem too useful, but it really is. For
example, wc would be used in conjunction with the Unix who command to
determine how many people are currently logged onto the system.

20

How can we read the file? We will first create an IOobject that will act as the
interface to the file. An IOobject is able to deal with a wide variety of devices, such
as local files and network communication via stream and datagram sockets. The
create method of IOobject takes an argument that indicates what device should be
opened. These always begin with a scheme prefix and, by design, are very similar to
URLs one might encounter while browsing the Internet with a web browser. Several
schemes are supported by the FARGOS/VISTA Object Management Environment core
and a given system may be extended with additional capabilities. Some of the
commonly supported schemes are:

• file:
• tcp:
• udp:

For the purposes of this example, our focus will be on the file: scheme. Its
prototype is similar to:

file:filename[,{r|w|t|a|c|e}+]

The file name is mandatory, but it can be qualified with some command options.
These are provided by separating the file name and the list of options with a comma
(","). If no command options are provided, the default operation is to open the file
for read. There are several recognized flags:

Table 2

Command Flag Meaning

R open for read

W open for write

T truncate the file

A append and open for write

C create if the file does not exist

E the file must exist

Thus, to open the file "abc.txt" for reading, the following specification could be used:

file:abc.txt,r

In a similar fashion, the file "def.txt" could be created (if needed), truncated if data
is already present and opened for writing using the following specification:

file:def.txt,cwt

Object Creation
Objects are created by sending a createObject request (or equivalent) to the
ObjectCreator object. This special object is automatically created as part of the
boot procedure of each FARGOS/VISTA Object Management Environment process.
Its object Id is always made available via the special pre-declared variable
ObjectCreator. In OIL2, object Ids are a special type named oid.

Note: each FARGOS/VISTA Object Management Environment process is uniquely
identified by the object Id of its respective ObjectCreator object.

The createObject method takes two mandatory arguments:

21

• the name of the class of the object to be created
• an access control list for the new object

Any additional arguments that are passed are made available to the create method
of the new object's class. The access control facilities for objects residing within a
FARGOS/VISTA Object Management Environment are quite flexible, but the most
commonly used access setting is to permit complete access to the user who creates
the object and deny access to all others. The FARGOS/VISTA Object Management
Environment provides a standard OIL2-callable function to create such an access
control list: makeDefaultACL(). This function and others like it are described in
the FARGOS/VISTA Object Management Environment Programmer's Reference. The
method fragment below illustrates the creation of an object:

assoc acl;
oid fileObj;

acl = makeDefaultACL();
fileObj = send "createObject"("IOobject", acl, fileName) to ObjectCreator;

Figure 6

Remote Procedure Call-style Sends
Often an application will want to send a message to another object and continue
processing. We saw such an example in Figure 4 when the deleteYourself message
was sent. There are many other situations, however, in which an application wants
to send a message to another object in order to obtain some information. In such a
situation, the application wants to wait until a response is received that contains the
information of interest. This common requirement is conveniently supported by the
OIL2 compiler using what is called an RPC-style send statement. An example of
such usage is found in Figure 6, where an object is created by sending a
createObject message to the ObjectCreator object. In this particular example, the
application waits until the object Id of the new object is returned by the
createObject method and stores the result in the variable fileObj.

The readBytes method of class IOobject reads data from a stream device, such as
a file or TCP connection. The readBytes method normally takes a single argument
that specifies the maximum number of bytes desired. It returns all of the available
data up to the specified limit. Upon reaching end-of-file, the special value nil is
returned. Because data returned from readBytes can be of either type string or nil,
the variable used to hold the return value should be declared as type any.

Special Operators
Up to this point, we have seen assignment constructs that have occurred time and
time again, one of which is a special case. There have been a lot of statements like:

var = var + expression

as in

 i = i + 1;
 sum = sum + list[i];

OIL2 has a nice way of expressing this, using the "+=" operator. The above
examples would then become:

var += expression

as in

22

 i += 1;
 sum += list[i];

You can see how this would save typing. It can also reduce errors, as you would not
have to repeat a complicated subscript expression. As a simple example:

 i = c - '0'; // get value of digit
 n_digits[i] = n_digits[i] + 1;

Normally we would write:

 n_digits[c-'0'] += 1;

and thus the extra variable i would not be needed.

There are several "op= " operators, such as "*=". In the program of Figure 12,
instead of:

 for (j=1;j<=i;j+=1) x_to_i = x_to_i * x;

we wrote:

 for (j=1;j<=i;j+=1) x_to_i *= x;

Reading Files
For the first version of our example, we will read data a byte at a time until the end
of the file is reached. To reduce the complexity of the example, only characters and
lines will be counted in this first version. So, when we read a character, what do we
do? First, we want to keep track of the number of characters in the file, thus after
reading each character we should increment a count. How do we tell if we are at the
end of a line? Each line is terminated by a new line character ("\n"). Thus, we will
check to see if the character read is a new line, and if so, increment the count of the
number of lines.

23

%include <OMEcore.o2h>

class WC1 {
} inherits from Object;

WC1:create(string fileName)
{
 string fileSpec;
 oid fileObj;
 assoc acl;
 int characterCount, lineCount, wordCount;
 any data;

 acl = makeDefaultACL();
 fileSpec = "file:" + fileName + ",r";

 fileObj = send "createObject"("IOobject", acl, fileSpec)
 to ObjectCreator;

 characterCount = 0;
 wordCount = 0;
 lineCount = 0;

 data = send "readBytes"(1) to fileObj;
 while (data != nil) {
 characterCount += 1;
 if (data == "\n") lineCount += 1;

 data = send "readBytes"(1) to fileObj;
 }
 display("characters=", characterCount, " words=", wordCount,
 " lines=", lineCount, "\n");
 send "deleteYourself" to fileObj; // close input file
 send "deleteYourself" to thisObject;
}

WC1:delete() {}

Figure 7

Note the use of "!=" to express the "not-equals" comparison in the conditional part
of the while-loop and the "+=" assignment operator, which adds the right hand side
of the expression to the left hand side and stores the result back into the left hand
side argument.

What does this code fragment do? It reads the first character in the file. If the file is
empty, the special value nil will be returned at this point. Next, the condition in the
while statement is evaluated. If the value nil has not been returned, then we
process the character. After processing the character, we read the next character in
the file, and jump to the top of the while-loop. Eventually, the end of the file will be
reached and the special value of nil will be returned, which will cause the loop to be
exited. Finally, the computed totals will be printed.

We see here our first "if " construct. It takes the form of:

 ifififif ((((condition)))) statement

Note the use of "==" to represent the "equals" comparison. Be careful when typing:
using "=" does not do what you want as "=" is the assignment operator. If you
typed:

if (c = "\n") ...

this would have the effect of changing the variable c and setting it equal to "\n"—not
what we intend. What we need is for the variable c to be compared to the string
corresponding to the new line character, which is represented by "\n" (the compiler

24

understands this special sequence), and if c is equal to that value, then increment
the variable lineCount. Using a single equals-sign instead of two is a very common
typing mistake and can be a hard error to track down.

Finally, how do we handle words? Let us make things simple and say that words are
separated by a space, tab or new line character. We will need to keep track of
whether or not we are in a word. We'll do this by using a variable, call it inWord,
which will be equal to 1 if we are in a word, and equal to 0 if we are not. If we are in
a word, and reach the end of a line (signaled by reading a new line ("\n") character)
or read a space, then we have reached the end of the word. Increment the word
count and set inWord equal to zero to denote that we are no longer in a word.

If we are not in a word, and read a character that is not a space, tab or a new line
character, then we should set inWord equal to one to denote that we are now in a
word. Thus, we have:

%include <OMEcore.o2h>

class WC2 {
} inherits from Object;

WC2:create(string fileName)
{
 string fileSpec;
 oid fileObj;
 assoc acl;
 int characterCount, lineCount, wordCount, inWord;
 any data;

 acl = makeDefaultACL();
 fileSpec = "file:" + fileName + ",r";

 fileObj = send "createObject"("IOobject", acl, fileSpec)
 to ObjectCreator;

 characterCount = 0;
 wordCount = 0;
 lineCount = 0;
 inWord = 0;

 data = send "readBytes"(1) to fileObj;
 while (data != nil) {
 characterCount += 1;
 if (data == "\n") lineCount += 1;
 if ((inWord == 1) && ((data == "\n") ||
 (data == " ") || (data == "\t"))) {
 // then was inside a word and reached the end
 wordCount += 1;
 inWord = 0;
 } else if ((inWord == 0) && (data != " ")
 && (data != "\n") && (data != "\t")) {
 inWord = 1;
 }

 data = send "readBytes"(1) to fileObj;
 }
 display("characters=", characterCount, " words=", wordCount,
 " lines=", lineCount, "\n");
 send "deleteYourself" to fileObj; // close input file
 send "deleteYourself" to thisObject;
}

WC2:delete() {}

Figure 8

25

All sorts of good stuff appears here, such as the "&&" and "||" operators (which
represent the logical AND and logical OR functions). We once again make use of the
braces ("{" and "}") to enclose groups of statements. Note the use of braces in the
third if statement ("if (inWord == 0...)"). In this case, the braces are not required.
Why? Because there is just a single statement, namely the "inWord = 1;". So why
use the braces? It just makes it easier to insert additional statements if it turns out
later that they are needed.

So, what does the first new if construct say? It asks if the variable inWord is equal
to 1 (i.e., are we in a word?), and if the variable data is equal to "\n" (the new line
character), a space or a tab. If true, then we have reached the end of the word and
we will increment he word count and reset the inWord variable. Note the use of
parentheses around the OR clause. The parentheses behave in the manner you
would expect. The value of the expression is the result of the OR operation and this
result is used as the second operand of the AND operation.

We also see our first "else ". If the condition of the first if is evaluated as false,
then the else clause is executed instead. In this case the clause is another if
statement that asks if we have reached the beginning of a new word.

Note: the order in which certain things are evaluated is normally not too important,
but occasionally it is. OIL2 has a few built in "precedence" rules. For example, it will
do multiplication and division first, and then do addition or subtraction. This is just
as you did in your math classes. This order of evaluation can be modified by the use
of parentheses, again just like normal math.

As another example, consider a utility that will strip trailing blanks from lines in a
text file.

26

%include <OMEcore.o2h>

class Local . StripBlanks {
} inherits from Object;

StripBlanks:create(string fileName)
{
 oid fileObj;
 assoc acl;
 string fileSpec;
 int rc, i, char;
 any data;
 string line, stripLine;

 fileSpec = makeAsString("file:", fileName, ",r");
 acl = makeDefaultACL();
 fileObj = send "createObject"("IOobject", acl, fileSpec)
 to ObjectCreator;

 rc = send "getID" to fileObj;
 if (rc == -1) { // could not open...
 display("Could not open ", fileName, "\n");
 send "deleteYourself" to fileObj;
 send "deleteYourself" to thisObject;
 exit;
 }
 line = "";
 data = send "readBytes"(1) to fileObj;
 while (data != nil) {
 if (data == "\n") { // end of line
 i = length(line) - 1;
 while (i >= 0) {
 char = midchar(line, i);
 if ((char != ' ') && (char != '\t') && (char != '\r')) break;
 i -= 1;
 }
 stripLine = midstr(line, 0, i + 1);
 display(stripLine, "\n");
 line = ""; // reset for next line
 } else {
 line += data;
 }
 data = send "readBytes"(1) to fileObj;
 }
 send "deleteYourself" to fileObj;
 send "deleteYourself" to thisObject;
}

StripBlanks:delete() {}

Figure 9

Exercise 4
The IOobject class provides a writeBytes method that is a complement to the
readBytes method. It is called as shown in the following code fragment:

 int bytesWritten;

 bytesWritten = send "writeBytes"(data) to obj;

Write a simple class in which the create method takes two arguments that indicate
the name of a source file and an output file. Duplicate the source file's contents to
the destination file and, for efficiency, read and write the data in blocks larger than 1

27

byte. The resulting application will be a close equivalent to the Unix cp command or
MS-DOS COPY command or the standard FARGOS/VISTA class SendFile.

Exercise 5
One of the things the C preprocessor normally does when it reads a source file is to
strip comments so that the resultant output from the preprocessor contains only
characters that a compiler needs to see. Write an OIL2 class that performs this
function of the C preprocessor. It should read a C/C++/OIL2 source file and write the
equivalent source program into an output file with no comments in it. Note:
comments do not nest.

Exercise 6
Add the required statements to the WC2 class in Figure 8 so that it will also count
and display the number of paragraphs in the file. Let us say that a paragraph is
denoted by a sequence of two or more new lines in a row.

Exercise 7
Write a simplified version of the Unix utility "prep ". The prep command prepares a
file for statistical processing. Your prep will read a source file and write its contents,
with one word-per-line, to an output file.

Arrays
Arrays are a very important concept. Up to this point, we have set aside memory
locations for storing data by declaring specific variables (e.g., "int c;", "float
celsius;"). This has worked fine for previous problems; however, we can anticipate
several kinds of problems where this would not be feasible. As an example, consider
a word-processing program. We cannot call each distinct memory location by a
different name. Similar problems arise in math: we often need more variables than
we can uniquely name. In math, we use subscripts to solve this problem: one can
write Xi (pronounced as X "sub" i). You can probably guess that we will do
something similar in programming.

The primary storage of a conventional computer system is organized as an array of
memory locations, each of which has a unique address. These addresses begin at 0,
thus the second memory location in the computer is address 1. The mathematically-
oriented can make the analogy between this and a vector. Indeed, arrays are
sometimes referred to as vectors by some programmers.

One point that (while not hard to see) often causes difficulty is the fact that if the
array (or vector) subscripts are numbered starting at 0, and the array has n
elements in it, then the subscript of the last element is n - 1, not n.

In general, we use arrays for two purposes: 1) we have a problem requiring too
many variables to be named uniquely, or 2) we want to select a variable based on
computations performed at runtime. The special pre-defined OIL2 method variable
argv is an example of the latter: while methods have a small number of arguments
and can easily be assigned unique names, being able to access the parameters via
an array permits the handling of a variable number of arguments.

28

Let's write a program before we are too bogged down in words. We will write a
simple calculator program that processes the arguments handed to the create
method.

%include <OMEcore.o2h>

class Calc1 {
} inherits from Object;

Calc1:create()
{
 int i;
 string operand;

 if (argc < 3) {
 display("Not enough arguments\n");
 send "deleteYourself" to thisObject;
 exit;
 }
 result = argv[0];
 i = 1;
 while (i < (argc - 1)) {
 op = argv[i];
 operand = argv[i + 1];
 if (op == "+") result += operand;
 else if (op == "-") result -= operand;
 else if (op == "*") result *= operand;
 else if (op == "/") result /= operand;

 i += 2;
 }
 display("result=", result, "\n");
 send "deleteYourself" to thisObject;
}

Calc1:delete() {}

Figure 10

We see here how we reference an array, using square-brackets: array-
name[subscript].

TThhee ffoorr--LLoooopp
The while-construct we already know was used to iterate over the over array
elements. This type of looping sequence is extremely common and OIL2 provides an
alternative construct, the for-loop, which can be used to achieve the desired effect in
less lines. The above loop can be expressed in terms of a for-loop:

 for (i=1;i < (argc – 1);i += 2) . . .;

The illustration above shows that the for-loop construction is written:

for (init;cond;mod) statement;

It is equivalent to:

init;
whilewhilewhilewhile ((((cond))))
{
 statement;
 mod;
}

"init" is an expression that is evaluated once before anything else is done; typically,
this is an assignment. "cond" is an expression that is evaluated before each
execution of each pass of the loop. As long as "cond" evaluates to a non-zero (true)

29

result, the loop will be executed. "statement" is the statement (or block of
statements) to be executed during each pass. "mod" is an expression that is
evaluated at the conclusion of each pass; typically, this is an increment of some
variable that is tested by the “cond” expression. Once "cond" is evaluated as zero
(false), execution falls through to the next statement—the loop “statement” is not
executed.

Complex Data Types
Many times programmers must deal with complicated data structures that cannot be
represented by single instances of simple types, such as integers, strings and real
numbers. OIL2 supports data types that address such problems: sparse arrays,
associative arrays and sets.

SSppaarrssee AArrrraayyss
Arrays in many programming languages are dense, meaning that all the subscript
indices must be contiguous (e.g., 0, 1, 2, 3, …), and they must have their size pre-
declared so that storage can be allocated ahead of time. In contrast, OIL2 arrays
have the ability to be sparse, which means that there can be arbitrary gaps between
subscript indices, and they never have a size declared. An OIL2 array can be
subscripted by any 32-bit integer value. OIL2 arrays are declared using the type
name array.

Often we want the data in an array to be in some kind of predefined order. The most
obvious example would be to place the data in ascending order, so that the smallest
element appears in the first element of the array, and the greatest element appears
in the last. There are many ways to sort data, some much better than others. We'll
look at an easily understood algorithm that really isn't that great with respect to
performance.

We can sort an array by looking for the smallest element in the portion of the array
we haven't yet sorted. When we find it, exchange it with the bottom of the unsorted
portion. Repeat the process on the remaining elements (there is one less now) until
all of the elements have been placed. The following program illustrates this:

30

%include <OMEcore.o2h>

class Local . Sort1 {
} inherits from Object;

Sort1:create()
{
 array data;
 int i, j, n;
 int min, pos;

 n = 10; // number of elements
 for (i=0;i<n;i+=1) data[i] = n - i;
 display("Original:\n");
 for (i=0;i<n;i+=1) {
 display("data[", i, "] = ", data[i], "\n");
 }
 // now sort
 for (i=0;i<n - 1;i+=1) {
 // n - 1 because we don't need to do anything if
 // only one element is left
 min = data[i];
 pos = i;
 // check remainder of array for a smaller element
 for (j=i+1;j<n;j+=1) {
 if (data[j] < min) { // found a smaller element
 min = data[j]; // remember it
 pos = j;
 }
 }
 // pos now points to element with smallest value
 // in the unsorted portion of the array. Exchange
 // with element i, the base of the unsorted
 // portion.
 data[pos] = data[i];
 data[i] = min;
 }
 display("Sorted:\n");
 for (i=0;i<n;i+=1) {
 display("data[", i, "] = ", data[i], "\n");
 }

 send "deleteYourself" to thisObject;
}

Sort1:delete() {}

Figure 11

Exercise 8
A good cryptographer finds ciphers trivial to solve. A cipher is essentially a coding
scheme like ASCII or EBCDIC—a one-to-one correspondence of letters or symbols.
These are simple to solve because cryptographers know that certain letters are used
more often than others are and they can analyze the frequency of use of each
symbol and make reasonable guesses as to what each represents.

Write a program that reads a file and counts how many times each letter is used.
Treat upper case and lower case alike. When the end of the file is reached, print out
the counts for the letters.

31

AAssssoocciiaattiivvee AArrrraayyss
OIL2 supports another form of array that uses strings as subscripts instead of
integers. These are called associative arrays and declared using the type name
assoc. Associative arrays make it very easy to implement tables whose key is not a
number. An example of such a table would be a telephone directory that maps a
person’s name to their phone number.

SSeettss
In OIL2, sets are a bit of a misnomer: they are more properly viewed as ordered
lists rather than mathematical sets. Elements can be added or removed from sets.
In OIL2, the individual elements of a set are processed using the for-do statement.

 for var inininin setExpr dodododo statement

The for-do loop accesses each element of the set setExpr in order. The value of a
set element is copied to the variable var and then statement will be executed. As an
example, consider the following fragment that finds the maximum element in a set:

 int minVal, v;
 set elements;

 elements += 1;
 elements += 3;
 elements += 2;
 // elements = { 1, 3, 2 }
 minVal = 0;
 forforforfor v inininin elements dodododo ifififif (v > minVal) minVal = v;
 // v = 3

Functions and Methods
We have already been making extensive use of several functions, such as display()
or length(). We have also invoked methods that returned a value, such as
readBytes or createObject.

Why do we use functions or methods? A fundamental reason is to benefit from the
efforts of other programmers.

One reason is because somebody has figured out how to do something we want to
do, but don't know how. As an obvious example, consider the display() function:
we don't actually know how to compose the required code to write to the standard
output, but we can utilize the efforts of someone who did. In a similar vein, we can
write a procedure or function to solve a common, often needed problem, such as
calculating the square root of a number. By making a useful function available to
other programmers, we make their jobs easier.

Frequently, programmers create a function or method that will be only used by their
application. They do this to break a large problem up into smaller problems that are
more easily understood and maintained.

Some languages make a distinction between procedures and functions. The
difference is that a function implies that a value is returned to the caller, whereas a
procedure does not. In the examples presented earlier in this document, we have
used length() as a function (it returns the number of character in a string) and
display() as a procedure (it returns the number of elements displayed, which was
not of interest to our applications). OIL2 does not make the distinction between
functions and procedures—they are all viewed as functions, but you can ignore the
result that was returned.

32

In contrast, methods are special functions or procedures that are associated with a
specific class. Some methods are able to return a value (and thus act as a function)
while others do not (and thus act as a procedure). If a method is invoked with
fromObject set to nil, then the return of a result is always inhibited. A method is
normally invoked using a separate thread of execution; however, OIL2 also permits a
method to be called as a function.

To illustrate a method that returns a value, let's write one that will calculate integral
powers of an integer. The first problem is to come up with a name. How about
"power"? Our function will take two arguments, say "x" and "i". We will return x
raised to the ith power or xi.

%include <OMEcore.o2h>

class Exponent {
} inherits from Object;

Exponent:create(int x, int i)
{
 int result;

 result = call "power"(x, i);
 display(x, "**", i, " = ", result, "\n");
 send "deleteYourself" to thisObject;
}

Exponent:delete() {}

Exponent:power(int x, int i)
{
 int x_to_i, j;

 x_to_i = 1;
 for(j=1;j<=i;j+=1) x_to_i *= x;
 return (x_to_i);
}

Figure 12

The example in Figure 12 contains the first appearance of the "return " statement.
If a method body does not return a value, then it exits either by "falling off" the end
of the code or by encountering an explicit exit statement. In contrast, method
bodies that return a result use the return statement. The value in the parentheses
is returned to the routine that called the method body and execution of the called
method body ceases.

Exercise 9
Write a method "min", which takes two integer parameters. It should return the
smaller of the two parameters.

The code in Figure 12 deals with integers. What if we wanted to do the same thing
for floating-point numbers? There are two approaches we can take in OIL2. The
first is to take advantage of the any type and leave it to the runtime environment to
perform the appropriate actions.

33

%include <OMEcore.o2h>

class Exponent {
} inherits from Object;

Exponent:create(int x, int i)
{
 any result; // was int, now any

 result = call "power"(x, i);
 display(x, "**", i, " = ", result, "\n");
 send "deleteYourself" to thisObject;
}

Exponent:delete() {}

Exponent:power(any x, int i) // was int x, now any x
{
 any x_to_i; // was int, now any
 int j;

 if (typeOf(x) == int) { // add check for argument type
 x_to_i = 1; // integer
 } else {
 x_to_i = 1.0; // floating-point
 }
 for(j=1;j<=i;j+=1) x_to_i *= x;
 return (x_to_i);
}

Figure 13

The code in Figure 13 is compact and easy to maintain. As a consequence of these
attributes, it is the most commonly used approach by OIL2 programmers. The
disadvantage is that additional CPU cycles will be required at runtime to make the
appropriate determinations. The second alternative is to implement several methods
with the same name but different types of arguments. This is called overloading in
some languages. The correct method implementation will be automatically selected
at runtime based upon the types of the arguments that are passed. In OIL2,
overloaded methods are enabled by qualifying a method with the unique keyword.
Because the type of the method’s arguments are known at compile time, more
efficient code can be generated for the method body.

34

%include <OMEcore.o2h>

class Exponent {
} inherits from Object;

Exponent:create(any x, int i)
{
 any result;

 result = call "power"(x, i);
 display(x, "**", i, " = ", result, "\n");
 send "deleteYourself" to thisObject;
}

Exponent:delete() {}

Exponent:power(int x, int i) unique
{
 int x_to_i, j;

display("power int argv=", argv);
 x_to_i = 1;
 for(j=1;j<=i;j+=1) x_to_i *= x;
 return (x_to_i);
}

Exponent:power(float x, int i) unique
{
 float x_to_i;
 int j;

display("power float argv=", argv);
 x_to_i = 1.0;
 for(j=1;j<=i;j+=1) x_to_i *= x;
 return (x_to_i);
}

Exponent:power(double x, int i) unique
{
 double x_to_i;
 int j;

display("power double argv=", argv);
 x_to_i = 1.0;
 for(j=1;j<=i;j+=1) x_to_i *= x;
 return (x_to_i);
}

Figure 14

Which style should one use? Most programmers do not have experience with
languages in which the type of a variable or argument can be inquired at runtime, so
they would tend to use overloaded methods out of habit. The disadvantage is that
there can be significant duplication of code required. While such duplication
increases the size of the executable, the critical disadvantage is that more effort is
required of the programmer during initial development and future maintenance.
Given that CPU speeds continue to increase at an incredible rate while human
abilities show little improvement, OIL2 programmers typically avoid overloaded
methods and write a single method that uses typeOf() and if-statements when
special handling of different argument types is required.

Exercise 10
Write a method "sort" which takes two parameters: one an array, the other an
integer denoting how many elements are in the array. The array should be the first

35

parameter. Your method should sort the array into ascending order and return the
sorted array. The code in Figure 11 should be helpful.

Note: rather than force a programmer to maintain a variable that indicates how
many elements are in an array, OIL2 applications would call the function
elementCount().

Exercise 11
OIL2 arrays have the intrinsic ability to be sparse. The functions nextIndex() and
indexExists() are used to iterate over all of the elements both sparse and
associative arrays. Write a method that takes a single argument and returns the
value of the largest element in the array.

Exercise 12
Write a method "revString " which will reverse the contents of a string and return the
computed result. Thus "123456" would become "654321".

Exercise 13
Write a method "substitute" which will take three string arguments. It will look for
the first string in the third: if found, the portion corresponding to the first string will
be replaced with the second. Note: this routine is a simplified version of the
substituteText() function.

Exercise 14
Write a simplified version of the Unix "fgrep" (fixed generate regular expression
pattern) utility. The fgrep utility accepts a string argument and then reads a file. It
prints out on the standard output each line of the file that contains the string. This is
a very useful utility. Your version will take two arguments: a string to search for
and the name of the file to open. Read from the file using an IOobject and display
lines that match using the display() function. Use of the findSubstring() function
is suggested.

Exercise 15
Write a much-simplified version of the Unix utility "sed" (stream editor) that
implements only a variation of the substitute command. The sed program reads a
file and writes an edited version on the standard output. The sed directive
"1,$s/string1/string2/" replaces the first occurrence of "string1" in a line with
"string2". The modified line would be written to the standard output after the
substitution. If string1 does not occur in the line, the line is written out unchanged.
Your version of sed will take two arguments: a string specifying a substitution
pattern and the name of a file to be read using an IOobject. The substitution
pattern should take the form “#string1#string2#”. The "#" represents any given
character. Thus the following are all valid and equivalent substitution patterns:
"Xstring1Xstring2X", “:string1:string2:”, or “/string1/string2/”. Output should be
performed using the display() function.

36

Global Variables
Up to this point, we have mostly been using local variables for computation. A local
variable declared in one method is invisible to another. Since OIL2 variables are
passed by value and not by reference, a method cannot modify the local variables of
another method. Whenever we have needed to remember something between
invocations of a method, we saved the information in an instance variable of the
class. This permitted methods of the class to share information associated with a
particular object and this is sufficient for the vast majority of situations. There are,
however, some special occasions where we want to share information between all
instances of a class. In OIL2, this capability is obtained by defining a variable within
a global section. As an illustration, consider:

globalglobalglobalglobal {{{{
 const stringconst stringconst stringconst string srcID = "Id"; // track RCS or CVS version Id
 intintintint totalObjects; // a global count
};};};};

Any methods within the source file that reference “totalObjects” will refer to the
same variable. The two most common reasons for using a global variable in an OIL2
program are:

• maintaining a count
• performance-sensitive sharing of read-only information between two objects

Note: global variables have a purpose, but programmers are strongly cautioned to
not use them unless necessary. Programmers who are not yet comfortable with
object-oriented programming may gravitate towards using global variables, when
they should have been declaring instance variables for their class.

Exercise 16
A stack is a very useful data structure. The classic example of a stack is that of a
pile of plates. You "push" plates onto the top of the stack and likewise "pop" off the
top plate when you remove one. This kind of behavior is termed last-in, first-out
(LIFO). Stacks are used extensively in programs. Write a method "push" that takes
an argument and a corresponding method "pop". These two methods should
maintain a stack using instance variables. Thus the following code fragment:

 call "push"(2);
 call "push"(3);
 call "push"(1);
 a = call "pop"();
 b = call "pop"();
 c = call "pop"();
 display("a=",a, " b=", b, " c=", c, "\n");

would produce output looking like:

 a=1 b=3 c=2

If an attempt is made to pop a stack that is empty, display() an error message.

Preprocesor Directives
We have already made use of file inclusion to include the definitions of standard
functions provided by the FARGOS/VISTA Object Management Environment. The
"%include" directive tells the OIL2 compiler to read the specified file. If a file name
is surrounded by "<" and ">" the compiler looks in a set of special locations for the
include file. If it is surrounded by normal quotes, then the file name is used as-is.

37

Normally files that are included contain definitions of external functions or definitions
of constants.

OIL2 source programs can be run through preprocessors. The oil2 shell script
provided with the FARGOS/VISTA Software Development Kit passes OIL2 source
code through the C preprocessor before invoking the OIL2 compiler (the oil2_parse
executable). Because OIL2 source can be compiled to OIL2 Architecture Neutral
Format object code without requiring a C++ compiler, some developer machines
may not have a C preprocessor available. Thus, if guaranteed universal portability is
required, C preprocessor macros should be avoided. Many developers, however,
write code only for their own organizations and are able to dictate the environment
in which they work. If they know a C preprocessor is available on their system, then
they should feel no constraint regarding their use of the oil2 shell script. For those
users, a discussion of some of the C preprocessor features is provided below. It can
be safely skipped by anyone not interested in utilizing such facilities.

Macro substitution is a powerful feature of the C preprocessor. In its simplest form,
it consists of normal text substitution. More advanced macros can be written that
take parameters. Macros are defined using the "#define" preprocessor directive.
Historically, the most common use of this feature in C programs was to define
constants that may be changed. For example, a buffer may be declared to be an
arbitrary size, and the routines that work on it must know how big it is. It is
considered bad practice to "hardwire" these constants into a program, because it
would be difficult to change the buffer size if desired. The way around this is to
define a macro that represents the size of the buffer:

#define BUF_SIZE 200

A C/C++ program can then use the macro "BUF_SIZ" any place it wants to talk
about the size of the buffer:

char buffer[BUF_SIZE];

or

 if (bfr_pos >= BUF_SIZE) printf("Buffer overflow!\en");

By convention, C programmers use all capital letters when naming macros that do
not have arguments (symbolic constants). They then stand out in a program and
can't be mistaken for variables. You should always follow this practice.

Note: rather than use #define’d constants, OIL2 programmers should use the
const declaration that is part of the language. For example:

 const int BUF_SIZE = 200;

Because of the const declaration in OIL2, simple substitution macros have little
utility in OIL2 source code. The macros supported by the C preprocessor can also
take arguments. Such complex macros can be of use to OIL2 programmers because
they can write macros that look like functions or procedures.

#define addOne(x) ((x) + 1)

Note that the macro definition above did not put a semicolon on the line because we
expect the "user" to do that when he uses the macro. Using macros instead of a
true function call can result in considerable savings of CPU time because an actual
function call is not performed when the program runs.

Finally, the C preprocessor supports conditional compilation. There are several
directives that can be used, but we'll illustrate the most general. To motivate this

38

discussion, consider the process of debugging a program. Normally an OIL2
programmer puts in a lot of display() statements to print out the contents of
variables at different points in the program. When the program is finally debugged,
these statements must be deleted somehow. More often than not, after the
programmer thinks everything is OK, another bug is found and the display() calls
have to be restored. The C preprocessor lets us do the following: we define a
simple macro/constant, say "DEBUG" and enclose the display() calls in between
conditional directives:

#define DEBUG
/* lot of code here */
#ifdef DEBUG
display("This is a debugging line\en");
#endif

The #ifdef directive asks if the argument is defined. So in this example it is asking if
DEBUG is defined. It was defined at the very top of the program. Since the
parameter was defined, all of the source code until the #endif is used. If not, then
that code is ignored. There is also a "#else" directive available, which is illustrated
below:

#ifdef DEBUG
display("This is a debugging line\en");
#else
display("This is the normal output line\en");
#endif

Thus by commenting out the #define DEBUG line at the top of the program, the
compiler only sees the final program. At any time we can uncomment the #define
DEBUG line, recompile, and have the debug statements work. Note: the
debugDisplay() function yields similar functionality, but is more powerful because
its usage does not require a recompile.

This is just one use of conditional compilation. Historically, the most popular use is
to permit programmers to write portable programs—they can use #ifdef's and be
able to write code that will run under a variety of operating systems. Depending on
what operating system the code is to run under, different macros will be defined and
thus different segments of code will be compiled. Given the architecture neutral
characteristics of the OIL2 runtime, such usage is rare indeed with OIL2 source.

Multi-Dimensional Arrays
We have found arrays to be very useful, but up to this point we have only used one-
dimensional arrays. It is not always convenient to be restricted to using one-
dimensional arrays. In OIL2, an array element can hold arbitrary data, including
another array. This is how multi-dimensional arrays are supported in OIL2.

Not yet processed
Up to this point, we have said that the local variables we declared were created when
a subroutine is entered and destroyed when the routine exits. This meant that there
was no way for a subroutine to remember something from one call to another unless
it used a global variable. Global variables necessarily always keep their values: they
are created at the time the program is loaded and disappear only when the program
finishes execution.

By default, local variables exist only for the life of the current method invocation.

39

We can think of global variables as having being static in the sense that they are
never destroyed. We know that when we declare a global variable in a source file,
the compiler then knows that the variable is global when we reference later in the
source file.

Global arrays are useful for other reasons. Recall that if an array is global, it is
never destroyed--it also stays in the same spot. Let's write a function that will take
a character, fill a string with its two-digit hex value and return a pointer to that
string:

/* lib hexconv: convert character to hex representation */
char *hexconv(c) /* returns pointer to a string */
char c;
{
 /* allocate 2 digits, mark end with '\e0' character */
 static char array[] = {'?','?','\e0'};
 static char digits[] = {'0','1','2','3','4','5','6','7',
 '8','9','A','B','C','D','E','F'};
 int i;

 i = c / 16; /* i = c divided by 16 */
 array[0] = digits[i]; /* get first digit */
 i = c % 16; /* i = c MOD 16 */
 array[1] = digits[i]; /* get second digit */
 return (array); /* return pointer to string */
}
/* endlib: hexconv */

We could not do this if "\fBarray\fR" was not static: when the routine returned the
array would be destroyed. Note the use of "%" to denote the MOD operation. This
is sometimes useful, such as in this example. We can illustrate the convenience of
returning a pointer to a string with the following program:

main()
{
 char *hexconv(); /* declare function */
 char a;

 a = '\en'; /* let's find out about newline */
 printf("decimal=%d, hex=%s\en",a,hexconv(a));
}

	Notice of Rights
	Trademarks
	Abbreviations
	Notice of Liability
	Preface
	An Introduction to Programming Using OIL2
	What is an Object?
	Defining Classes
	Class Names
	Namespaces and Version Ids
	Instance Variables
	Inheritance Hierarchy
	Class Definition Syntax
	Methods

	Compiling OIL2 Source Code
	Configuring the Development Environment
	Invoking the OIL2 Compiler
	The Hello World Program
	Running an OIL2 Application
	Exercise 1

	Executable Statements
	A Temperature Conversion Chart
	Arithmetic Precision
	Method Arguments
	Sending Simple Messages
	
	Exercise 2
	Exercise 3

	Strings
	Simple Input/Output in OIL2
	Object Creation
	Remote Procedure Call-style Sends
	Special Operators
	Reading Files
	
	Exercise 4
	Exercise 5
	Exercise 6
	Exercise 7

	Arrays
	The for-Loop

	Complex Data Types
	Sparse Arrays
	Exercise 8

	Associative Arrays
	Sets

	Functions and Methods
	
	Exercise 9
	Exercise 10
	Exercise 11
	Exercise 12
	Exercise 13
	Exercise 14
	Exercise 15

	Global Variables
	
	Exercise 16

	Preprocesor Directives
	Multi-Dimensional Arrays
	
	
	Not yet processed

